2023, Number 1
Phage endolysins as molecular tools against gram-negative bacteria
Language: Spanish
References: 90
Page: 1-13
PDF size: 548.42 Kb.
ABSTRACT
Recently, lytic enzymes encoded by bacteriophages or phages (endolysins) have been proposed as an alternative to combat pathogenic bacteria. The antibacterial character of these enzymes results from their ability to hydrolyze peptidoglycan activity, which composes the bacterial cell wall. Endolysins are characterized by a narrow spectrum of action, rapid bactericidal effect, low probability of bacterial resistance, harmlessness, and effectiveness against antibiotic-resistant pathogens. Thanks to sequencing platform accessibility and massive data analysis, many endolysin-encoding genes have been identified within phage genomes. Moreover, their bactericidal activity can be enhanced by manipulating their functional domains through protein engineering. Notably, this manipulation can broaden their bactericidal spectrum against Gram-negative bacteria, which are mostly insensitive to their effect. The fusion of peptides capable of permeabilizing the outer membrane has expanded the application of these endolysins against pathogens of critical priority. There are research groups worldwide with outstanding developments and patents with this technology. However, in Mexico, it is a line of research little explored. With this work, we intend to disseminate this new generation of antibacterials.REFERENCES
Antonova, N. P., Vasina, D. V., Lendel, A. M., Usachev, E.V., Makarov, V. V., Gintsburg, A. L., Tkachuk, A. P. &Gushchin, V. A. (2019). Broad bactericidal activity of theMyoviridae bacteriophage lysins Lysam24, Lysecd7, andLyssi3 against Gram-negative ESKAPE pathogens. Viruses,11(3), 284. DOI: 10.3390/v11030284
Antonova, N. P., Vasina, D. V., Rubalsky, E. O., Fursov,M. V., Savinova, A. S., Grigoriev, I. V., Usachev, E. V.,Shevlyagina, N. V., Zhukhovitsky, V. G., Balabanyan,V. U., Potapov, V., Aleshkin, A., Makarov, V., Yudin, S.,Gintsburg, A., Tkachuk, A. & Gushchin, V. A. (2020).Modulation of endolysin LysECD7 bactericidal activityby different peptide tag fusion. Biomolecules, 10(3), 440.DOI: 10.3390/biom10030440
Briers, Y., Walmagh, M., Van Puyenbroeck, V., Cornelissen, A.,Cenens, W., Aertsen, A., Oliveira, H., Azeredo, J., Verween,G., Pirnay, J.-P., Miller, S., Volckaert, G. & Lavigne, R.(2014). Engineered endolysin-based “Artilysins” to combatmultidrug-resistant Gram-negative pathogens. MBio, 5(4),e01379-14. DOI: 10.1128/mBio.01379-14
Díez-Martínez, R., De Paz, H., Bustamante, N., García, E.,Menéndez, M. & García, P. (2013). Improving the lethaleffect of Cpl-7, a pneumococcal phage lysozyme withbroad bactericidal activity, by inverting the net chargeof its cell wall-binding module. Antimicrobial Agentsand Chemotherapy, 57(11), 5355-5365. DOI: 10.1128/AAC.01372-13
Górski, A., Międzybrodzki, R., Łobocka, M., Głowacka-Rutkowska, A., Bednarek, A., Borysowski, J., Jończyk-Matysiak, E., Łusiak-Szelachowska, M., Weber-Dąbrowska,B., Bagińska, N., Letkiewicz, S., Dąbrowska, K. & Scheres,J. (2018). Phage Therapy: What Have We Learned?. Viruses,10(6), 288. DOI: 10.3390/v10060288
Ho, M. K. Y., Zhang, P., Chen, X., Xia, J. & Leung, S. S. Y.(2022). Bacteriophage endolysins against gram-positivebacteria, an overview on the clinical development andrecent advances on the delivery and formulation strategies.Critical Reviews in Microbiology, 48(3), 303-326. DOI:10.1080/1040841X.2021.1962803
Kashani, H., Schmelcher, M., Sabzalipoor, H., Seyed Hosseini,E. & Moniri, R. (2018). Recombinant endolysins as potentialtherapeutics against antibiotic-resistant Staphylococcusaureus: Current Status of Research and Novel DeliveryStrategies. Clinical Microbiology Reviews, 31(1), e00071-17. DOI: 10.1128/CMR.00071-17
Korndörfer, I. P., Kanitz, A., Danzer, J., Zimmer, M., Loessner,M. J. & Skerra, A. (2008). Structural analysis of thel-alanoyl-d-glutamate endopeptidase domain of Listeriabacteriophage endolysin Ply500 reveals a new member ofthe LAS peptidase family. Acta Crystallographica SectionD: Biological Crystallography, 64(6), 644-650. DOI:10.1107/S0907444908007890
Lai, M. J., Soo, P. C., Lin, N. T., Hu, A., Chen, Y. J., Chen, L. K.& Chang, K. C. (2013). Identification and characterisation ofthe putative phage-related endolysins through full genomesequence analysis in Acinetobacter baumannii ATCC 17978.International Journal of Antimicrobial Agents, 42(2), 141-148. DOI: 10.1016/j.ijantimicag.2013.04.022
Lukacik, P., Barnard, T. J., Keller, P. W., Chaturvedi, K.S., Seddiki, N., Fairman, J. W., Noinaj, N., Kirby, T.L., Henderson, J. P., Steven, A. C., Hinnebusch, B. J. &Buchanan, S. K. (2012a). Structural engineering of a phagelysin that targets Gram-negative pathogens. Proceedingsof the National Academy of Sciences, 109(25), 9857-9862.DOI: 10.1073/pnas.1203472109
Oliveira, H., Pinto, G., Oliveira, A., Oliveira, C., Faustino,M. A., Briers, Y., Domingues, L. & Azeredo, J. (2016a).Characterization and genome sequencing of a Citrobacterfreundii phage CfP1 harboring a lysin active againstmultidrug-resistant isolates. Applied Microbiology andBiotechnology, 100, 10543-10553. DOI: 10.1007/s00253-016-7858-0
Oliveira, H., Vilas Boas, D., Mesnage, S., Kluskens, L. D.,Lavigne, R., Sillankorva, S., Secundo, F. & Azeredo, J.(2016b). Structural and enzymatic characterization ofABgp46, a novel phage endolysin with broad anti-gramnegativebacterial activity. Frontiers in Microbiology, 7,208. DOI: 10.3389/fmicb.2016.00208
Roberts, K. D., Zhu, Y., Azad, M. A. K., Han, M.-L., Wang,J., Wang, L., Yu, H. H., Horne, A. S., Pinson, J.-A., Rudd,D., Voelcker, N. H., Patil, N. A., Zhao, J., Jiang, X., Lu,J., Chen, K., Lomovskaya, O., Hecker, S. J., Thompson,P. E., Nation, R. L., Dudley, M. N., Griffith, D.C., Velkov,T. & Li, J. (2022). A synthetic lipopeptide targeting topprioritymultidrug-resistant Gram-negative pathogens.Nature Communications, 13(1), 1625. DOI: 10.1038/s41467-022-29234-3
Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M.B., Loy, A., Poulos, B. T., Solonenko, N., Lara, E., Poulain,J., Pesant, S., Kandels-Lewis, S., Dimier, C., Picheral, M.,Searson, S., Cruaud, C., Alberti, A., Duarte, C. M., Gasol,J. M., Vaqué, D., Coordinators, T. O., Bork, P., Acinas, S.G., Wincker, P. & Sullivan, M. B. (2016). Ecogenomicsand potential biogeochemical impacts of globally abundantocean viruses. Nature, 537(7622), 689-693. DOI: 10.1038/nature19366
Rusic, D., Vilovic, M., Bukic, J., Leskur, D., Seselja Perisin,A., Kumric, M., Martinovic, D., Petric, A., Modun, D. &Bozic, J. (2021). Implications of COVID-19 pandemicon the emergence of antimicrobial resistance: Adjustingthe response to future outbreaks. Life, 11(3), 220. DOI:10.3390/life11030220
Shavrina, M. S., Zimin, A. A., Molochkov, N. V., Chernyshov,S. V., Machulin, A. V. & Mikoulinskaia, G. V. (2016). Invitro study of the antibacterial effect of the bacteriophageT5 thermostable endolysin on Escherichia coli cells.Journal of Applied Microbiology, 121(5), 1282-1290. DOI:10.1111/jam.13251
Yan, G., Liu, J., Ma, Q., Zhu, R., Guo, Z., Gao, C., Wang, S.,Yu, L., Gu, J., Hu, D., Han, W., Du, R., Yang, J. & Lei, L.(2017). The N-terminal and central domain of colicin Aenables phage lysin to lyse Escherichia coli extracellularly.Antonie van Leeuwenhoek, 110(12), 1627-1635. DOI:10.1007/s10482-017-0912-9