2023, Number 1
The cytokine TGF-β in colorectal cancer: mechanisms of action and secretion.
Language: Spanish
References: 99
Page: 1-18
PDF size: 952.53 Kb.
ABSTRACT
The colorectal cancer (CRC) is one of the most aggressive and lethal in humans; its incidence is increasing due to poor eating habits and a sedentary lifestyle. Genomic alterations affecting various signaling pathways contribute to this cancer development. The transforming Growth Factor-β (TGF-β) is a multifunctional cytokine that controls multiple biological effects, including the maintenance of tissue homeostasis; however, alterations in its mechanisms of action favor the development of pathologies such as fibrosis and cancer. In early stages of CRC, TGF-β exerts tumor suppressive effects, whereas it promotes tumor progression in advanced stages, which is why it is considered an important therapeutic target. This review describes and analyzes the potential mechanisms of action and secretion of TGF-β in the tumor microenvironment of CRC, focusing on the knowledge generated using human CRC cell lines: SW480 (primary tumor) and SW620 (metastatic tumor), which come from the same patient and are characterized by being very agresive. These cells synthesize and secrete high levels of TGF-β, and express the main components of its signaling pathway, such as receptors and effectors, with the exception of SMAD4 protein. Furthermore, this review is also focused on describing the composition of the extracellular vesicles secreted by SW480 and SW620 cells, and their biological effects on various types of target cells; thus, we propose that these cells can provide a model to study the mechanisms of action and secretion of TGF-β cytokine in the later stages of CRC.REFERENCES
Berg, K., Eide, P., Eilersten, I., Johannessen, B., Bruun, J.,Danielsen, S., Bjørnslett, M., Meza-Zepeda, L., Eknæs, M.,Lind, G., Myklebost, O., Skotheim, R., Sveen, A. & Lothe,R. (2017). Multi-omics of 34 colorectal cancer cell lines- a resource for biomedical studies. Mol. Cancer, 16, 116.DOI: 10.1186/s12943-017-0691-y
Chen, X., Liu, J., Zhang, Q., Liu, B., Cheng, Y., Zhang, Y., Sun,Y., Ge, H. & Liu, Y. (2020). Exosome-mediated transferof miR-93-5p from cancer-associated fibroblasts conferradioresistance in colorectal cancer cells by downregulatingFOXA1 and upregulating TGFB3. J. Exp. Clin. CancerRes., 39, 65. DOI:10.1186/s13046-019-1507-2
de Miranda, N., van Dinther, M., van den Akker, B., van Wezel,T., ten Dijke, P. & Morreau, H. (2015). Transforminggrowth factor β signaling in colorectal cancer cells withmicrosatellite instability despite biallelic mutationsin TGFBR2. Gastroenterology, 148, 1427–1437.DOI: 10.1053/j.gastro.2015.02.052
Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., Yan,Y., Mao, F., Zhao, C., Shi, Y. & Xu, W. (2012). Gastriccancer exosomes trigger differentiation of umbilical cordderived mesenchymal stem cells to carcinoma-associatedfibroblasts through TGF-β/Smad pathway. PLoS One, 7,e52465. DOI: 10.1371/journal.pone.0052465
Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G.,Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., DiGiannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N.,Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E.,Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M.,Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran,A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Labori,K. J., Kure, E. H., Grandgenett, P. M., Hollingsworth, M.A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V.,Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang,Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado,H., Bromberg, J. & Lyden, D. (2015). Tumor Exosomeintegrins determine organotropic metastasis. Nature, 527,329–335. DOI:q0.1038/nature15756
Inamoto, S., Itatani, Y., Yamamoto, T., Minamiguchi, S., Hirai,H., Iwamoto, M., Hasegawa, S., Taketo, M., Sakai, Y. &Kawada, K. (2016). Loss of SMAD4 Promotes ColorectalCancer Progression by Accumulation of Myeloid-DerivedSuppressor Cells through the CCL15-CCR1 ChemokineAxis. Clin. Cancer Res., 22, 492–501. DOI: 10.1158/1078-0432.CCR-15-0726
Ji, H., Greening, D., Barnes, T., Lim, J., Tauro, B., Rai, A., Xu,R., Adda, C., Mathivanan, S., Zhao, W., Xue, Y., Xu, T., Zhu,H. & Simpson, R. (2013). Proteome profiling of exosomesderived from human primary and metastatic colorectalcancer cells reveal differential expression of key metastaticfactors and signal transduction components. Proteomics,13, 1672–1686. DOI: 10.1002/pmic.201200562
Ji, Q., Zhou, L., Sui, H., Yang, L., Wu, X., Song, Q., Jia, R.,Li, R., Sun, J., Wang, Z., Liu, N., Feng, Y., Sun, X., Cai,G., Feng, Y., Cai, J., Cao, Y., Cai, G., Wang, Y. & Li, Q.(2020). Primary tumors release ITGBL1-rich extracellularvesicles to promote distal metastatic tumor growth throughfibroblast-niche formation. Nat. Commun., 11, 1211.DOI:10.1038/s41467-020-14869-x
Kodach, L., Wiercinska, E., de Miranda, N., Bleuming, S.,Musler, A., Peppelenbosch, M., Dekker, E., van denBrink, G., van Noesel, C., Morreau, H., Hommes, D.,Ten Dijke, P., Offerhaus, G. & Hardwick, J. (2008). Thebone morphogenetic protein pathway is inactivated in themajority of sporadic colorectal cancers. Gastroenterology,134, 1332–1341. DOI: 10.1053/j.gastro.2008.02.059
Levy, L. & Hill, C. (2005). Smad4 Dependency Defines TwoClasses of Transforming Growth Factor β (TGF-β) TargetGenes and Distinguishes TGF-β-Induced Epithelial-Mesenchymal Transition from Its Antiproliferative andMigratory Responses. Mol. Cell. Biol., 25, 8108–8125.DOI: 10.1128/MCB.25.18.8108-8125.2005
Maslankova, J., Vecurkovska, I., Rabajdova, M., Katuchova, J.,Kicka, M., Gayova, M. & Katuch, V. (2022). Regulationof transforming growth factor-β-induced cell motility ismediated through Cten in colorectal cancer signaling as atherapeutic approach to treating colorectal cancer. WorldJ. Gastroenterol., 28, 4733–4761. DOI: 10.3748/wjg.v28.i33.4744
Mizuno, T., Cloyd, J., Vicente, D., Omichi, K., Chun, Y., Kopetz,S., Maru, D., Conrad, C., Tzeng, C., Wei, S., Aloia, T. &Vauthey, J. (2018). SMAD4 gene mutation predicts poorprognosis in patients undergoing resection for colorectalliver metastases. Eur. J. Surg. Oncol., 44, 684–692.DOI: 10.1016/j.ejso.2018.02.247
Morris, S., Davison, J., Carter, K., O’Leary, R., Trobridge,P., Knoblaugh, S., Myeroff, L., Markowitz, S., Brett,B., Scheetz, T., Dupuy, A., Starr, T. & Grady, W. (2017).Transposon mutagenesis identifies candidate genes thatcooperate with loss of transforming growth factor-betasignaling in mouse intestinal neoplasms. Int. J. Cancer,140, 853–863. DOI: 10.1002/ijc.30491
Ogawa, R., Yamamoto, T., Hirai, H., Hanada, K., Kiyasu,Y., Nishikawa, G., Mizuno, R., Inamoto, S., Itatani, Y.,Sakai, Y. & Kawada, K. (2019). Loss of SMAD4 PromotesColorectal Cancer Progression by Recruiting Tumor-Associated Neutrophils via the CXCL1/8-CXCR2 Axis.Clin. Cancer Res., 25, 2887–2899. DOI: 10.1158/1078-0432.CCR-18-3684
Okita, A., Takahashi, S., Ouchi, K., Inoue, M., Watanabe, M.,Endo, M., Honda, H., Yamada, Y. & Ishioka, C. (2018).Consensus molecular subtypes classification of colorectalcancer as a predictive factor for chemotherapeutic efficacyagainst metastatic colorectal cancer. Oncotarget, 9, 18698–18711. DOI: 10.18632/oncotarget.24617
Popēna, I., Ābols, A., Saulīte, L., Pleiko, K., Zandberga, E.,Jēkabsons, K., Endzeliņš, E., Llorente, A., Linē, A. &Riekstiņa, U. (2018). Effect of colorectal cancer-derivedextracellular vesicles on the immunophenotype and cytokinesecretion profile of monocytes and macrophages. CellCommun. Signal., 16, 1–12. DOI: 10.1186/s12964-018-0229-y
Principe, D., DeCant, B., Staudacher, J., Vitello, D., Mangan, R.,Wayne, E., Mascariñas, E., Diaz, A., Bauer, J., McKinney,R., Khazaie, K., Pasche, B., Dawson, D., Munshi, H.,Grippo, P. & Jung, B. (2016). Loss of TGFβ signalingpromotes colon cancer progression and tumor-associatedinflammation. Oncotarget, 8, 3826–3839. DOI: 10.18632/oncotarget.9830
Qin, F., Liu, X., Chen, J., Huang, S., Wei, W., Zou, Y., Liu,X., Deng, K., Mo, S., Chen, J., Chen, X., Huang, Y. &Liang, W. (2020). Anti-TGF-β attenuates tumor growthvia polarization of tumor associated neutrophils towardsan anti-tumor phenotype in colorectal cancer. J. Cancer,11, 2580–2592. DOI: 10.7150/jca.38179
Rossowska, J., Anger, N., Wegierek, K., Szcygiel, A.,Mierzejewska, J., Milczarek, M., Szermer-Olearnik, B.& Pajtasz-Piasecka. E. (2019). Antitumor Potential ofExtracellular Vesicles Released by Genetically ModifiedMurine Colon Carcinoma Cells With Overexpression ofInterleukin-12 and shRNA for TGF-β1. Front. Immunol.,10, 211. DOI:10.3389/fimmu.2019.00211
Sarli, L., Bottarelli, L., Bader, G., Iusco, D., Pizzi, S., Costi,R., D’Adda, T., Bertolani, M., Roncoroni, L. & Bordi,C. (2004). Association between recurrence of sporadiccolorectal cancer, high level of microsatellite instability,and loss of heterozygosity at chromosome 18q. Dis. ColonRectum, 47, 1467–1482.DOI: 10.1007/s10350-004-0628-6
Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., Chen,C., Chang, W., Ping, Y., Ji, P., Wu, J., Quan, W., Yao, Y.,Zhou, Y., Sun, Z. & Li, D. (2020). Exosomal circPACRGLpromotes pregression of colorectal cancer via the miR-142-3p/miR-506-3p-TGFB1 axis. Mol. Cancer., 19, 117.DOI:10.1186/s12943-020-01235-0
Suwakulsiri, W., Rai, A., Xu, R., Chen, M., Greening, D. &Simpson, R. (2019). Proteomic profiling reveals key cancerprogression modulators in shed microvesicles released fromisogenic human primary and metastatic colorectal cancercell lines. BBA-Proteins and Proteomics, 1867, 14017.DOI: 10.1016/j.bbapap.2018.11.008
Szczepanski, M., Szajnik, M., Welsh, A., Whiteside, T. &Boyiadzis, M. (2011). Blast-derived microvesicles in serafrom patients with acute myeloid leukemia suppress naturalkiller cell function via membrane-associated transforminggrowth factor-beta1. Haematologica, 96, 1302–1309.DOI:10.3324/haematol.2010.039743
Voorneveld, P., Kodach, L., Jacobs, R., Liv, N., Zonnevylle, A.,Hoogenboom, J., Biemond, I., Verspaget, H., Hommes, D.,de Rooij, K., van Noesel, C., Morreau, H., van Wezel, T.,Offerhaus, G., van den Brink, G., Peppelenbosch, M., TenDijke, P. & Hardwick, J. (2014). Loss of SMAD4 altersBMP signaling to promote colorectal cancer cell metastasisvia activation of Rho and ROCK. Gastroenterology, 147,196–208. DOI: 10.1053/j.gastro.2014.03.052
Wrana, J., Attisano, L., Wieser, R., Ventura, F. & Massagué, J.(1994). Mechanism of activation of the TGF-beta receptor.Nature, 370, 341–347. DOI: 10.1038/370341a0. Xu, R., Greening, D., Chen, M., Rai, A., Ji, H., Takahashi, N.& Simpson, R. (2019). Surfaceome of Exosomes Secretedfrom the Colorectal Cancer Cell Line SW480: Peripheraland Integral Membrane Proteins Analyzed by Proteolysisand TX114. Proteomics, 19, e1700453. DOI: 10.1002/pmic.201700453
Yamada, N., Kuranaga, Y., Kumazaki, M., Shinohara, H.,Taniguchi, K. & Akao, Y. (2016). Colorectal cancer cellderivedextracellular vesicles induce phenotypic alteration ofT cells into tumor-growth supporting cells with transforminggrowth factor-B1-mediated suppression. Oncotarget, 7,27033–27043. DOI:10.18632/oncotarget.7041
Zhang, Y., Wang, S., Lai, Q., Fang, Y., Wu, C., Liu, Y., Li, Q.,Wang, X., Gu, C., Chen, J., Cai, J., Li, A. & Liu, S. (2020).Cancer-associated fibroblasts-derived exosomal miR-17-5ppromotes colorectal cancer aggresive phenotype by initiatinga RUNX3/MYC/TGF-b1 positive feedback loop. CancerLett., 491, 22–35. DOI:10.1016/j.canlet.2020.07.023