2023, Número 1
Activación concertada de los receptores transmembranales: Repercusiones fisiológicas
Idioma: Español
Referencias bibliográficas: 108
Paginas: 1-17
Archivo PDF: 608.87 Kb.
RESUMEN
Los estudios iniciales acerca de los receptores acoplados a proteínas G (GPCRs) sugerían que los mismos no interactúan con otro tipo de receptores, o bien lo hacen con miembros de su propia familia. Recientemente, este concepto ha cambiado, ya que existe evidencia cada vez más abundante, de que interactúan con otras clases de receptores, diversificando así sus funciones y su capacidad para responder a los estímulos del entorno. El proceso mediante el cual un receptor desencadena cascadas de señalamiento a partir de un segundo receptor, en ausencia de síntesis de proteínas, se ha denominado “transactivación”. En esta revisión se analiza la transactivación de algunos receptores transmembranales, los mecanismos intracelulares involucrados, y sus repercusiones fisiopatológicas, utilizando como ejemplo a los receptores activados por proteasas (PARs). Éstos fueron de los primeros receptores en los que se demostró este tipo de interacción, así como su participación en una gran variedad de procesos fisiológicos, debido a su capacidad para relacionarse con una gran variedad de proteínas de la membrana. La diversidad de funciones que deriva de las interacciones entre los receptores incrementa el nivel de complejidad de sus cascadas de señalamiento, y representan una gran oportunidad para el desarrollo de nuevos protocolos terapéuticos.REFERENCIAS (EN ESTE ARTÍCULO)
Almonte, A. G., Hamill, C. E., Chhatwal, J. P., Wingo, T. S.,Barber, J. A., Lyuboslavsky, P. N., David Sweatt, J., Ressler,K. J., White, D. A., & Traynelis, S. F. (2007). Learningand memory deficits in mice lacking protease activatedreceptor-1. Neurobiology of Learning and Memory, 88(3),295–304. https://doi.org/10.1016/J.NLM.2007.04.004
Amadesi, S., Cottrell, G. S., Divino, L., Chapman, K., Grady,E. F., Bautista, F., Karanjia, R., Barajas-Lopez, C., Vanner,S., Vergnolle, N., & Bunnett, N. W. (2006). Proteaseactivatedreceptor 2 sensitizes TRPV1 by protein kinaseCε- and A-dependent mechanisms in rats and mice. Journalof Physiology, 575(2), 555–571. https://doi.org/10.1113/jphysiol.2006.111534
Asokananthan, N., Graham, P. T., Fink, J., Knight, D. A., Bakker,A. J., McWilliam, A. S., Thompson, P. J., & Stewart, G. A.(2002). Activation of Protease-Activated Receptor (PAR)-1,PAR-2, and PAR-4 Stimulates IL-6, IL-8, and ProstaglandinE 2 Release from Human Respiratory Epithelial Cells. TheJournal of Immunology, 168(7), 3577–3585. https://doi.org/10.4049/jimmunol.168.7.3577
Burch, M. L., Ballinger, M. L., Yang, S. N. Y., Getachew, R.,Itman, C., Loveland, K., Osman, N., & Little, P. J. (2010a).Thrombin stimulation of proteoglycan synthesis in vascularsmooth muscle is mediated by protease-activated receptor-1transactivation of the transforming growth factor βtypeI receptor. Journal of Biological Chemistry, 285(35),26798–26805. https://doi.org/10.1074/jbc.M109.092767
Burch, M. L., Ballinger, M. L., Yang, S. N. Y., Getachew, R.,Itman, C., Loveland, K., Osman, N., & Little, P. J. (2010b).Thrombin stimulation of proteoglycan synthesis in vascularsmooth muscle is mediated by protease-activated receptor-1transactivation of the transforming growth factor βtypeI receptor. Journal of Biological Chemistry, 285(35),26798–26805. https://doi.org/10.1074/jbc.M109.092767
Burch, M. L., Osman, N., Getachew, R., Al-Aryahi, S., Poronnik,P., Zheng, W., Hill, M. A., & Little, P. J. (2012). G proteincoupled receptor transactivation: Extending the paradigm toinclude serine/threonine kinase receptors. In InternationalJournal of Biochemistry and Cell Biology (Vol. 44, Issue5, pp. 722–727). Elsevier Ltd. https://doi.org/10.1016/j.biocel.2012.01.018
Caruso, R., Pallone, F., Fina, D., Gioia, V., Peluso, I., Caprioli,F., Stolfi, C., Perfetti, A., Spagnoli, L. G., Palmieri, G.,MacDonald, T. T., & Monteleone, G. (2006). Proteaseactivatedreceptor-2 activation in gastric cancer cellspromotes epidermal growth factor receptor trans-activationand proliferation. American Journal of Pathology, 169(1),268–278. https://doi.org/10.2353/ajpath.2006.050841
Cattaneo, F., Guerra, G., Parisi, M., De Marinis, M., Tafuri,D., Cinelli, M., & Ammendola, R. (2014). Cell-surfacereceptors transactivation mediated by G protein-coupledreceptors. In International Journal of Molecular Sciences(Vol. 15, Issue 11, pp. 19700–19728). MDPI AG. https://doi.org/10.3390/ijms151119700
Cattaneo, F., Iaccio, A., Guerra, G., Montagnani, S., &Ammendola, R. (2011). NADPH-oxidase-dependentreactive oxygen species mediate EGFR transactivation byFPRL1 in WKYMVm-stimulated human lung cancer cells.Free Radical Biology and Medicine, 51(6), 1126–1136.https://doi.org/10.1016/j.freeradbiomed.2011.05.040
Chandrasekharan, U. M., Waitkus, M., Kinney, C. M., Walters-Stewart, A., & Dicorleto, P. E. (2010). Synergistic inductionof mitogen-activated protein kinase phosphatase-1 bythrombin and epidermal growth factor requires vascularendothelial growth factor receptor-2. Arteriosclerosis,Thrombosis, and Vascular Biology, 30(10), 1983–1989.https://doi.org/10.1161/ATVBAHA.110.212399
Chaplin, R., Thach, L., Hollenberg, M. D., Cao, Y., Little, P. J.,& Kamato, D. (2017). Insights into cellular signalling byG protein coupled receptor transactivation of cell surfaceprotein kinase receptors. Journal of Cell Communicationand Signaling, 11(2), 117–125. https://doi.org/10.1007/S12079-017-0375-9
Chen, J., Ishii, M., Wang, L., Ishii, K., & Coughlin, S. R.(1994). Thrombin receptor activation. Confirmation of theintramolecular tethered liganding hypothesis and discoveryof an alternative intermolecular liganding mode. Journalof Biological Chemistry, 269(23), 16041–16045. https://doi.org/10.1016/s0021-9258(17)33970-4
Chung, H., Ramachandran, R., Hollenberg, M. D., & Muruve,D. (2013). Proteinase-activated receptor-2 transactivation ofepidermal growth factor receptor and transforming growthfactor-β receptor signaling pathways contributes to renalfibrosis. The Journal of Biological Chemistry, 288(52),37319–37331. https://doi.org/10.1074/JBC.M113.492793
Darmoul, D., Gratio, V., Devaud, H., & Laburthe, M. (2004).Protease-activated receptor 2 in colon cancer: TrypsininducedMAPK phosphorylation and cell proliferationare mediated by epidermal growth factor receptortransactivation. Journal of Biological Chemistry, 279(20),20927–20934. https://doi.org/10.1074/jbc.M401430200
El-Daly, M., Saifeddine, M., Mihara, K., Ramachandran, R.,Triggle, C. R., & Hollenberg, M. D. (2014). Proteinaseactivatedreceptors 1 and 2 and the regulation of porcinecoronary artery contractility: A role for distinct tyrosinekinase pathways. British Journal of Pharmacology, 171(9),2413–2425. https://doi.org/10.1111/bph.12593
Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M.D., & Kaufmann, R. (2013). Proteinase-activated receptors(PARs) - Focus on receptor-receptor- interactions andtheir physiological and pathophysiological impact. In CellCommunication and Signaling (Vol. 11, Issue 1). https://doi.org/10.1186/1478-811X-11-86
Hawkins, B. J., Solt, L. A., Chowdhury, I., Kazi, A. S., Abid,M. R., Aird, W. C., May, M. J., Foskett, J. K., & Madesh,M. (2007). G Protein-Coupled Receptor Ca2+-LinkedMitochondrial Reactive Oxygen Species Are Essentialfor Endothelial/Leukocyte Adherence. Molecular andCellular Biology, 27(21), 7582. https://doi.org/10.1128/MCB.00493-07
Holinstat, M., Boutaud, O., Apopa, P. L., Vesci, J., Bala, M.,Oates, J. A., & Hamm, H. E. (2011). Protease-ActivatedReceptor Signaling in Platelets Activates CytosolicPhospholipase A2α Differently for Cyclooxygenase-1 and12-Lipoxygenase Catalysis. Arteriosclerosis, Thrombosis,and Vascular Biology, 31(2), 435. https://doi.org/10.1161/ATVBAHA.110.219527
Holinstat, M., Voss, B., Bilodeau, M. L., McLaughlin, J. N.,Cleator, J., & Hamm, H. E. (2006). PAR4, but not PAR1,signals human platelet aggregation via Ca2+ mobilizationand synergistic P2Y12 receptor activation. Journal ofBiological Chemistry, 281(36), 26665–26674. https://doi.org/10.1074/jbc.M602174200
Jarry, A., Dorso, L., Gratio, V., Forgue-Lafitte, M. E., Laburthe,M., Laboisse, C. L., & Darmoul, D. (2007). PAR-2 activationincreases human intestinal mucin secretion throughEGFR transactivation. Biochemical and BiophysicalResearch Communications, 364(3), 689–694. https://doi.org/10.1016/j.bbrc.2007.10.073
Jenkins, R. G., Su, X., Su, G., Scotton, C. J., Camerer, E.,Laurent, G. J., Davis, G. E., Chambers, R. C., Matthay,M. A., & Sheppard, D. (2006). Ligation of proteaseactivatedreceptor 1 enhances α vβ6 integrin-dependentTGF-β activation and promotes acute lung injury. Journalof Clinical Investigation, 116(6), 1606–1614. https://doi.org/10.1172/JCI27183
Kamato, D., Bhaskarala, V. V., Mantri, N., Oh, T. G., Ling, D.,Janke, R., Zheng, W., Little, P. J., & Osman, N. (2017). RNAsequencing to determine the contribution of kinase receptortransactivation to G protein coupled receptor signalling invascular smooth muscle cells. PLoS ONE, 12(7). https://doi.org/10.1371/JOURNAL.PONE.0180842
Kamato, D., Do, B. H., Osman, N., Ross, B. P., Mohamed,R., Xu, S., & Little, P. J. (2020). Smad linker regionphosphorylation is a signalling pathway in its own rightand not only a modulator of canonical TGF-β signalling.Cellular and Molecular Life Sciences, 77(2), 243–251.https://doi.org/10.1007/S00018-019-03266-3
Kaufmann, R., Hascher, A., Mubbach, F., Henklein, P.,Katenkamp, K., Westermann, M., & Settmacher, U.(2012). Proteinase-activated receptor 2 (PAR2) incholangiocarcinoma (CCA) cells: Effects on signaling andcellular level. Histochemistry and Cell Biology, 138(6),913–924. https://doi.org/10.1007/s00418-012-1006-4
Kaufmann, R., Oettel, C., Horn, A., Halbhuber, K. J., Eitner,A., Krieg, R., Katenkamp, K., Henklein, P., Westermann,M., Böhmer, F. D., Ramachandran, R., Saifeddine, M.,Hollenberg, M. D., & Settmacher, U. (2009). Met receptortyrosine kinase transactivation is involved in proteinaseactivatedreceptor-2-mediated hepatocellular carcinomacell invasion. Carcinogenesis, 30(9), 1487–1496. https://doi.org/10.1093/carcin/bgp153
Kawabata, A., Kubo, S., Ishiki, T., Kawao, N., Sekiguchi, F.,Kuroda, R., Hollenberg, M. D., Kanke, T., & Saito, N. (2004).Proteinase-Activated Receptor-2-Mediated Relaxation inMouse Tracheal and Bronchial Smooth Muscle: SignalTransduction Mechanisms and Distinct Agonist Sensitivity.Journal of Pharmacology and Experimental Therapeutics,311(1), 402–410. https://doi.org/10.1124/JPET.104.068387
Kawao, N., Nagataki, M., Nagasawa, K., Kubo, S., Cushing,K., Wada, T., Sekiguchi, F., Ichida, S., Hollenberg, M.D., MacNaughton, W. K., Nishikawa, H., & Kawabata,A. (2005a). Signal transduction for proteinase-activatedreceptor-2-triggered prostaglandin E2 formation inhuman lung epithelial cells. Journal of Pharmacology andExperimental Therapeutics, 315(2), 576–589. https://doi.org/10.1124/jpet.105.089490
Kawao, N., Nagataki, M., Nagasawa, K., Kubo, S., Cushing,K., Wada, T., Sekiguchi, F., Ichida, S., Hollenberg, M.D., MacNaughton, W. K., Nishikawa, H., & Kawabata,A. (2005b). Signal transduction for proteinase-activatedreceptor-2-triggered prostaglandin E2 formation inhuman lung epithelial cells. Journal of Pharmacology andExperimental Therapeutics, 315(2), 576–589. https://doi.org/10.1124/jpet.105.089490
Lei, H., & Kazlauskas, A. (2014). A Reactive Oxygen Species-Mediated, Self-Perpetuating Loop Persistently ActivatesPlatelet-Derived Growth Factor Receptor α. Molecular andCellular Biology, 34(1), 110–122. https://doi.org/10.1128/mcb.00839-1366. Lin, H., Liu, A. P., Smith, T. H., & Trejo, J. A. (2013). Cofactoringand dimerization of proteinase-activated receptors. InPharmacological Reviews (Vol. 65, Issue 4, pp. 1198–1213).American Society for Pharmacology and ExperimentalTherapeutics. https://doi.org/10.1124/pr.111.004747
Madhusudhan, T., Wang, H., Straub, B. K., Gröne, E., Zhou,Q., Shahzad, K., Müller-Krebs, S., Schwenger, V., Gerlitz,B., Grinnell, B. W., Griffin, J. H., Reiser, J., Gröne, H.J., Esmon, C. T., Nawroth, P. P., & Isermann, B. (2012).Cytoprotective signaling by activated protein C requiresprotease-activated receptor-3 in podocytes. Blood, 119(3),874–883. https://doi.org/10.1182/blood-2011-07-365973
Maeda, Y., Sekiguchi, F., Yamanaka, R., Sugimoto, R.,Yamasoba, D., Tomita, S., Nishikawa, H., & Kawabata,A. (2015). Mechanisms for proteinase-activated receptor1-triggered prostaglandin E2 generation in mouseosteoblastic MC3T3-E1 cells. Biological Chemistry, 396(2),153–162. https://doi.org/10.1515/HSZ-2014-0148
Maggio, N., Shavit, E., Chapman, J., & Segal, M. (2008).Thrombin Induces Long-Term Potentiation of Reactivityto Afferent Stimulation and Facilitates Epileptic Seizuresin Rat Hippocampal Slices: Toward Understanding theFunctional Consequences of Cerebrovascular Insults.Journal of Neuroscience, 28(3), 732–736. https://doi.org/10.1523/JNEUROSCI.3665-07.2008
Moriyuki, K., Sekiguchi, F., Matsubara, K., Nishikawa, H.,& Kawabata, A. (2009). Proteinase-activated receptor-2-triggered prostaglandin E2 release, but not cyclooxygenase-2upregulation, requires activation of the phosphatidylinositol3-kinase / akt / nuclear factor-κB pathway in human alveolarepithelial cells. Journal of Pharmacological Sciences,111(3), 269–275. https://doi.org/10.1254/jphs.09155FP
Mußbach, F., Henklein, P., Westermann, M., Settmacher,U., Böhmer, F. D., & Kaufmann, R. (2015). Proteinaseactivatedreceptor 1- and 4-promoted migration of Hep3Bhepatocellular carcinoma cells depends on ROS formationand RTK transactivation. Journal of Cancer Researchand Clinical Oncology, 141(5), 813–825. https://doi.org/10.1007/S00432-014-1863-4
Peng, S., Grace, M., Gondin, A., Retamal, J., Dill, L., Darby, W.,Bunnett, N., Abogadie, F., Carbone, S., Tigani, T., Davis, T.,Poole, D., NA, Veldhuis, N., & P, McIntyre, P. (2020). Thetransient receptor potential vanilloid 4 (TRPV4) ion channelmediates protease activated receptor 1 (PAR1)-inducedvascular hyperpermeability. Laboratory Investigation;a Journal of Technical Methods and Pathology, 100(8),1057–1067. https://doi.org/10.1038/S41374-020-0430-7
Poole, D. P., Amadesi, S., Veldhuis, N. A., Abogadie, F. C.,Lieu, T., Darby, W., Liedtke, W., Lew, M. J., McIntyre, P.,& Bunnett, N. W. (2013). Protease-activated Receptor 2(PAR2) Protein and Transient Receptor Potential Vanilloid4 (TRPV4) Protein Coupling Is Required for SustainedInflammatory Signaling. The Journal of BiologicalChemistry, 288(8), 5790. https://doi.org/10.1074/JBC.M112.438184
Principe, D. R., Diaz, A. M., Torres, C., Mangan, R. J., DeCant,B., McKinney, R., Tsao, M.-S., Lowy, A., Munshi, H. G.,Jung, B., & Grippo, P. J. (2017). TGFβ engages MEK/ERKto differentially regulate benign and malignant pancreas cellfunction. Oncogene, 36(30), 4336. https://doi.org/10.1038/ONC.2016.500
Sekiguchi, F., Saito, S., Takaoka, K., Hayashi, H., Nagataki, M.,Nagasawa, K., Nishikawa, H., Matsui, H., & Kawabata,A. (2007). Mechanisms for prostaglandin E2 formationcaused by proteinase-activated receptor-1 activation in ratgastric mucosal epithelial cells. Biochemical Pharmacology,73(1), 103–114. https://doi.org/10.1016/J.BCP.2006.09.016
Sevigny, L. M., Zhang, P., Bohm, A., Lazarides, K., Perides,G., Covic, L., & Kuliopulos, A. (2011). Interdictingprotease-activated receptor-2-driven inflammationwith cell-penetrating pepducins. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 108(20), 8491–8496. https://doi.org/10.1073/pnas.1017091108
Shankar, H., Garcia, A., Prabhakar, J., Kim, S., & Kunapuli,S. P. (2006). P2Y12 receptor-mediated potentiation ofthrombin-induced thromboxane A2 generation in plateletsoccurs through regulation of Erk1/2 activation. Journal ofThrombosis and Haemostasis, 4(3), 638–647. https://doi.org/10.1111/j.1538-7836.2006.01789.x
Shavit-Stein, E., Artan-Furman, A., Feingold, E., Shimon, M.ben, Itzekson-Hayosh, Z., Chapman, J., Vlachos, A., &Maggio, N. (2017). Protease Activated Receptor 2 (PAR2)Induces Long-Term Depression in the Hippocampus throughTransient Receptor Potential Vanilloid 4 (TRPV4). Frontiersin Molecular Neuroscience, 10. https://doi.org/10.3389/FNMOL.2017.00042
Shavit-Stein, E., Itsekson-Hayosh, Z., Aronovich, A., Reisner,Y., Bushi, D., Pick, C. G., Tanne, D., Chapman, J., Vlachos,A., & Maggio, N. (2015). Thrombin induces ischemic LTP(iLTP): implications for synaptic plasticity in the acutephase of ischemic stroke. Scientific Reports, 5. https://doi.org/10.1038/SREP07912
van der Merwe, J. Q., Hollenberg, M. D., & MacNaughton, W.K. (2008). EGF receptor transactivation and MAP kinasemediate proteinase-activated receptor-2-induced chloridesecretion in intestinal epithelial cells. American Journal ofPhysiology - Gastrointestinal and Liver Physiology, 294(2).https://doi.org/10.1152/ajpgi.00303.2007
Van Der Merwe, J. Q., Hollenberg, M. D., & MacNaughton,W. K. (2008). EGF receptor transactivation and MAPkinase mediate proteinase-activated receptor-2-inducedchloride secretion in intestinal epithelial cells. AmericanJournal of Physiology - Gastrointestinal and LiverPhysiology, 294(2), G441–G451. https://doi.org/10.1152/ajpgi.00303.2007
Veldhuis, N. A., Poole, D. P., Grace, M., McIntyre, P., &Bunnett, N. W. (2015). The g protein–coupled receptor–transient receptor potential channel axis: Molecular insightsfor targeting disorders of sensation and inflammation.Pharmacological Reviews, 67(1), 36–73. https://doi.org/10.1124/PR.114.009555
Zhao, P., Lieu, T., Barlow, N., Metcalf, M., Veldhuis, N. A.,Jensen, D. D., Kocan, M., Sostegni, S., Haerteis, S.,Baraznenok, V., Henderson, I., Lindström, E., Guerrero-Alba, R., Valdez-Morales, E. E., Liedtke, W., McIntyre, P.,Vanner, S. J., Korbmacher, C., & Bunnett, N. W. (2014).Cathepsin S Causes Inflammatory Pain via Biased Agonismof PAR2 and TRPV4. The Journal of Biological Chemistry,289(39), 27215. https://doi.org/10.1074/JBC.M114.599712
Zhao, P., Lieu, T., Barlow, N., Sostegni, S., Haerteis, S.,Korbmacher, C., Liedtke, W., Jimenez-Vargas, N. N.,Vanner, S. J., & Bunnett, N. W. (2015). NeutrophilElastase Activates Protease-activated Receptor-2 (PAR2)and Transient Receptor Potential Vanilloid 4 (TRPV4) toCause Inflammation and Pain. The Journal of BiologicalChemistry, 290(22), 13875. https://doi.org/10.1074/JBC.M115.642736