2022, Number 2
<< Back Next >>
Rev Cub Oftal 2022; 35 (2)
Optimization of constants for accurate calculation of five intraocular lens models
Hernández LI, Cárdenas DT, Batista LAJ
Language: Spanish
References: 16
Page: 1-16
PDF size: 527.03 Kb.
ABSTRACT
Objective:
To optimize the constants used by the SRK/T, SRK/T2, Holladay 1 and Hoffer Q formulas for five intraocular lens (IOL) models implanted during cataract surgery at the Cuban Institute of Ophthalmology (January/2006-October/2019).
Methods:
47341 patients were retrospectively studied. The constants were optimized by adjusting the average prediction error (EPm) to zero and obtaining the value that showed the maximum number of eyes with absolute prediction error |EP| ≤ 0.25, for both ultrasonic and optical biometry. The effectiveness of the optimized constants was verified by analyzing the lowest average and median absolute errors (EAM/EAMed) and the percentage of eyes in a given range of prediction error as a function of the value of the constants. The Haigis formula performance index and a newly introduced index were also analyzed.
Results:
The optimized constants were significantly different from the manufacturer's values. The values obtained for EPm = 0 were different from the EAM and EAMed minima. The percentage of eyes with |EP| ≤ 0.25 and 0.50 D differed when the optimization criteria were different. SRK/T and SRK/T2 showed the best performances, according to both indexes.
Conclusions:
Optimized constants improve postoperative outcomes for each IOL-formula combination. Different optimization criteria lead to different results. The EAM, the EAMed and the percentage of eyes with |EP| ≤ 0.50 D are valid parameters to check the performance of the formulas, until a single, reliable and consensual index is available.
REFERENCES
Gu X, Wang L, Breen M, Merchea M. IOL Lens Constant Optimization. Alcon; 2019[acceso: 21/11/2021]. Disponible en: Disponible en: https://us.alconscience.com/wp-content/uploads/2019/09/1906A277-US-ORA-19-E-1275-Lens-Constants-White-Paper.pdf 1.
Fernández-Álvarez JC, Hernández-López I, Cruz-Cobas PP, Cárdenas-Díaz T, Batista-Leyva AJ. Using a multilayer perceptron in intraocular lens power calculation. J Cataract Refract Surg. 2019;45(12):1753-1761. DOI: http://dx.doi.org/10.1016/j.jcrs.2019.07.0352.
Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008[acceso: 21/11/2021];34(3):368-76. Disponible en: Disponible en: https://www.mendeley.com/catalogue/90fa33b6-03eb-30ae-bd4c-9fa93ff6d124/?utm_source=desktop 3.
Hoffer KJ, Savini G. Update on Intraocular Lens Power Calculation Study Protocols: The Better Way to Design and Report Clinical Trials. Ophthalmology. 2021[acceso: 21/11/2021];128(11):e115-20. DOI:https://doi.org/10.1016/j.ophtha.2020.07.0054.
Wang L, Koch DD, Hill W, Abulafia A. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg. 2017;43(8):999-1002. DOI:https://doi.org/10.1016/j.jcrs.2017.08.0035.
Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16(3):333-40. DOI:https://doi.org/10.1016/s0886-3350(13)80705-56.
Sheard RM, Smith GT, Cooke DL. Improving the prediction accuracy of the SRK / T formula : The T2 formula. J Cataract Refract Surg. 2010 [acceso: 21/11/2021];36(11):1829-34. DOI:http://dx.doi.org/10.1016/j.jcrs.2010.05.0317.
Holladay JT. International intraocular lens and implant registry 2003. J Cataract Refract Surg. 2003 Jan;29(1):176-97. DOI:https://doi.org/10.1016/s0886-3350(02)02020-58.
Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988 Jan;14(1):17-24. DOI:https://doi.org/10.1016/s0886-3350(88)80059-29.
Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19(6):700-12. DOI: https://doi.org/ 10.1016/s0886-3350(13)80338-010.
Zuberbuhler B, Morrell AJ. Errata in printed Hoffer Q formula. J Cataract Refract Surg [Internet]. 2007[acceso: 21/11/2021];33(1):2. Disponible en: Disponible en: https://journals.lww.com/02158034-200701000-00002 11.
Devgan U. Going beyond the A-constant for IOL calculations. Ocular Surgery News. 2017[acceso: 21/11/2021]. Disponible en: Disponible en: https://www.healio.com/news/ophthalmology/20170508/going-beyond-the-aconstant-for-iol-calculations 12.
Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg. 2011[acceso: 21/11/2021];37(1):50-62. Disponible en: Disponible en: https://journals.lww.com/02158034-201101000-00010 13.
Fernández J, Rodríguez-Vallejo M, Piñero DP. Re: Hoffer et al14. . Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. 2020[acceso: 21/11/2021];128:e17-8. Disponible en: Disponible en: https://www.aaojournal.org/article/S0161-6420(20)31037-X/fulltext 14.
Hou M, Ding Y, Liu L, Li J, Liu X, Wu M. Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas. Graefes Arch Clin Exp Ophthalmol. 2021 Dec;259(12):3739-3747. DOI:https://doi.org/10.1007/s00417-021-05295-W15.
Hughes R, Aristodemou P, Sparrow JM, Kaye S. Surgeon effects on cataract refractive outcomes are minimal compared with patient comorbidity and gender: an analysis of 490 987 cases. Br J Ophthalmol. 2021. DOI: https://doi.org/10.1136/bjophthalmol-2021-32023116.