2022, Number 2
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (2)
Effects of intraspecific larval competence of Aedes aegypti and Aedes albopictus under laboratory conditions
Martínez LY, Bisset LJA, Martínez PY, Gato AR, Camacho AE, Acosta RM, Marquetti FMC
Language: Spanish
References: 29
Page:
PDF size: 550.93 Kb.
ABSTRACT
Introduction:
Aedes aegypti and Aedes albopictus are two of the most important mosquito species, since they are the main vector of emerging and re-emerging diseases that represent a significant threat to public health.
Objective:
To evaluate the effect of intraspecific larval competence caused by low and high density in two populations of Ae. aegypti and Ae. albopictus on aspects of their life cycles under laboratory conditions.
Methods:
Two mosquitos populations were used, Ae. aegypti and Ae. albopictus, both collected during their larval stage in Juan de Dios Fraga town, La Lisa, Havana, Cuba. Low (70 larvae) and high (140 larvae) density conditions were established in each replication for each species. Larvae from the first stage were used and follow-up was established until adults emerged. Variables such as: larval cycle duration, larval survival, and adult female size and survival were evaluated.
Results:
The variables evaluated were not affected under low larval density conditions. However, the intraspecific larval relationship under high density conditions in Ae. aegypti and Ae. albopictus habitats had a negative effect in each of the variables of the life cycles.
Conclusions:
The observed alterations are important within the components of vectorial capacity, with implications for the epidemiology of these mosquitos-borne diseases. The results could be extended to the behavior of these mosquitoes in their natural environment. These conditions could increase the transmission patterns of dengue virus and the risk of infection for the human population.
REFERENCES
Wesula O, Obanda V, Lindström A, Ahlm C, Evander M, Náslund J, et al. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. J Vector Borne Dis. 2020;20(2):71-81.
Juliano S, Lounibos L. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol Lett. 2005;8:558-74.
Paixão ES, Teixeira MG, Rodrigues LC. Zika, Chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018;3(suppl 1):e000530.
Jentes E, Poumerol G, Gershman M, Hill D, Lemarchand J. Informal WHO working group on geographic risk for yellow fever. The revised global yellow fever risk map and recommendations for vaccination, 2010: Concensus of the informal WHO working group on geographic risk for yellow fever. Lancet Infect Dis. 2011;11:622-32.
Rey J, Lounibos P. Ecología de Aedes aegypti y Aedes albopictus en América y transmisión de enfermedades. Biomédica. 2015;35:177-85. DOI: http://dx.doi.org/10.7705/biomedica.v35i2.25145.
Margalef R. Ecología. Omega E, editor. Barcelona; 1986.
Reiskind M, Lounibos L. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2009;23:62-8.
Beserra E, Fernandes C. Relação entre densidade larval e ciclo de vida, tamanho e fecundidade de Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) em laboratório. 2009. Neotrop Entomol. 2009;38(6):847-52.
Walsh R, Facchinelli L, Ramsey J, Bond JFG. Assessing the impact of density dependence in field populations of Aedes aegypti. J Vector Ecol. 2011;36(2):300-7.
Lounibos LP. Competitive displacement and reduction. J Am Mosq Control Assoc. 2007;23(2 Suppl):276-82.
Muturi J, Blackshear M. Temperature and density dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37(1):154-61.
Pérez O, Rodríguez J, Bisset J, Leyva M, Díaz M, Fuentes O. Manual de indicaciones técnicas para insectarios. La Habana: Editorial de Ciencias Médicas; 2004.
DOUE-L-. Directiva 2010/63/UE del Parlamento Europeo y del Consejo, de 22 de septiembre de 2010, relativa a la protección de los animales utilizados para fines científicos. 2010 [Citado 17/06/2017]:81868. Disponible en: http://eurlex.europa.eu/legalcontent/ES/TXT/?uri=CELEX:32010L006313.
González R, Carrejo N. Introducción al estudio taxonómico de Anopheles de Colombia: claves y notas de distribución. Colombia: Claves y notas de distribución; 2009. p. 248.
Vargas M. El mosquito: un enemigo peligroso: biología, control e importancia en la salud humana (Diptera: Culicidae). Editorial Universidad de Costa Rica. 1998;264(1).
Mitchell F, Warsame A, Logan C, Rau M. The influence of larval density, food stress, and parasitism on the bionomics of the dengue vector Ae. aegypti (Diptera: Culicidae): implications for integrated vector management. J Vector Ecol. 2012;37(1):221-9.
Arrivillaga J. Food as a limiting factor for Ae. aegypti in water storage containers. J Vector Ecol. 2004;29:11-20.
Telang A, Frame L. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Am J Exp Biol. 2007;210(5):854-64.
Bargielowski I, Nimmo D, Alphey L, Jacob C. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One. 2011;6(6):20699.
Manrique P, Che-Mendoza A, Rizzo N, Arana B, Pilger D, Lenhart A, et al. Operational guide for assessing the productivity of Aedes aegypti breeding sites. Geneva: WHO; 2011.
Mastrantonio V, Crasta G, Puggioli A, Bellini R, Urbanelli S, Porretta D. Cannibalism in temporary waters: Simulations and laboratory experiments revealed the role of spatial shape in the mosquito Aedes albopictus. PLoS One. 2018;13(5).
Koenekoop R. Cannibalism among Aedes triseriatus larvae. Ecol Entomol. 1986;11(1):111-4.
Braks M, Honorio L, Lounibos P, Lourenc R, Juliano A. Interspecific competition between two Invasive Species of Container Mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am. 2004;97(1):130-9.
Constanzo K, Mormann K, Juliano S. Asymmetrical competition and patterns of Abundance of Aedes albopictus and Culex pipiens (Diptera: Culicidae). J Med Entomol. 2005;42(5):559-70.
Giraldo B, Martínez M. Efecto de la competición larval sobre poblaciones del vector del dengue colectadas en Medellín, Colombia. Rev Cubana Med Trop. 2014;66(1):84-100.
Gama R, Alves K, Martins R, Eiras A, Resende M. Effect of larval density on adult size of Aedes aegypti reared under laboratory conditions. Rev Soc Bras Med Trop. 2005;38(1):64-6.
Maciel R, Codeco C. Body size associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol. 2007;21(3):284-92.
Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol.1990;36(3):16.
Alto B, Lounibos LP, Mores CN, Reiskind MH. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proceedings of the Royal Society B. J Biol Sci. 2008;275(1633):463-71.