2022, Number 2
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (2)
Bacillus thuringiensis A21, a non-toxic isolate of high residual larvicidal activity against Aedes aegypti
González RA, Torres CAE, Companioni IA, Cantillo PJD, García GI, Anaya MJ, Hernández ÁHM
Language: Spanish
References: 39
Page:
PDF size: 481.25 Kb.
ABSTRACT
Introduction:
Bacillus thuringiensis-based products have been successfully used for insect control. However, their low residuality promotes the search for alternatives. In Cuba, different studies have informed about the evaluation and selection of B. thuringiensis isolates with larvicidal activity against Aedes aegypti: isolate A21 highlights for its high larvicidal activity and absence of beta-exotoxins.
Objective:
To evaluate the acute oral toxicity/pathogenicity and the residual larvicidal activity of isolate A21.
Methods:
The evaluation of the acute oral toxicity/pathogenicity of isolate A21 was established in the animal model Rattus norvegicus. Daily clinical observations of the animals were carried out, and their body weight was evaluated. The elimination and infectivity of B. thuringiensis were estimated by analyzing feces, and fluids and organs samples, respectively. To determine the residual larvicidal activity of isolate A21 to Ae. aegypti larvae, bioassays were conducted with different volumes of weekly water changes (total, partial, no change) in the containers. Mortality was calculated at 24h-72h.
Results:
No acute oral toxicity/pathogenicity was detected with isolate A21 in Rattus norvegicus. In the study of residuality, at 72h larval mortality remained high (80%-100%) until week 24, decreasing from week 25 (p < 0.05).
Conclusions:
It is evidenced the low toxicity and high residual larvicidal activity of isolate A21 against Ae. aegypti, which makes it a promising candidate for the development of biolarvicides. These biological products could contribute to the improvements of the existing vector control strategies in Cuba.
REFERENCES
Silva-Filha M, Romão TP, Rezende TMT, Carvalho KDS, Gouveia de Menezes HS, Alexandre do Nascimento N, et al. Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel). 2021;13(8). DOI: https://doi.org/10.3390/toxins130805231.
Zogo B, Tchiekoi BNC, Koffi AA, Dahounto A, Ahoua Alou LP, Dabiré RK, et al. Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malar J. 2019;18(1):55. DOI: https://doi.org/10.1186/s12936-019-2687-02.
Dawson D, Salice CJ, Subbiah S. The efficacy of the Bacillus thuringiensis israelensis larvicide against Culex tarsalis in municipal waste water and water from natural wetlands. J Am Mosq Control Assoc. 2019;35(2):97-106. DOI: https://doi.org/10.2987/18-6771.13.
Uragayala S, Kamaraju R, Tiwari S, Ghosh SK, Valecha N. Field testing & evaluation of the efficacy & duration of effectiveness of a biolarvicide, Bactivec((r)) SC (Bacillus thuringiensis var. israelensis SH-14) in Bengaluru, India. Indian J Med Res. 2018;147(3):299-307. DOI: https://doi.org/10.4103/ijmr.IJMR_1631_164.
Malovichko YV, Nizhnikov AA, Antonets KS. Repertoire of the Bacillus thuringiensis Virulence Factors Unrelated to Major Classes of Protein Toxins and Its Role in Specificity of Host-Pathogen Interactions. Toxins. 2019;11(6):347. DOI: https://doi.org/10.3390/toxins110603475.
González Rizo A, Companioni Ibañez A, Menéndez Díaz Z, Anaya Martínez J, García García I, Lorenzo Borjas CM, et al. Evaluación de la eficacia larvicida de Rapidall NP3 (Bacillus thuringiensis) contra Aedes aegypti (Linnaeus) (Diptera: Culicidae) en condiciones de laboratorio. Rev Cubana Med Trop. 2019;71(1):e355.
He X Sun, He K, Guo S. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Appl Microbiol Biotechnol. 2017;101(7):2779-89. DOI: https://doi.org/10.1007/s00253-016-8070-y7.
Setha T, Chantha N, Benjamin S, Socheat D. Bacterial Larvicide, Bacillus thuringiensis israelensis Strain AM 65-52 Water Dispersible Granule Formulation Impacts Both Dengue Vector, Aedes aegypti (L.) Population Density and Disease Transmission in Cambodia. PLOS Neglected Tropical Diseases. 2016:1-17. DOI: https://doi.org/10.1371/journal.pntd.00049738.
Rodríguez Rodríguez J, Menéndez Díaz Z, García García I, Díaz Pérez M, Sánchez JE, Gato Armas R. Conducta de oviposición de Aedes aegypti (L.) en presencia de Macrocyclops albidus (J.) y Bacillus thuringiensis var. israelensis en condiciones de laboratorio. Rev Cubana Med Trop. 2007;59(1):73-5.
Day JF. Mosquito Oviposition Behavior and Vector Control. Insects. 2016;7(4):65. DOI: https://doi.org/10.3390/insects704006510.
Menéndez Z, Rodríguez J, Gato R, Companioni A, Díaz M, Bruzón RY. Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis. Rev Cubana Med Trop. 2012;64(3):324-9.
Tissera HA, Samaraweera PC, Jayamanne BDW, Janaki MDS, Chulasiri UMPP, Rodrigo C, et al. Use of Bacillus thuringiensis israelensis in integrated vector control of Aedes sp. in Sri Lanka: a prospective controlled effectiveness study. Trop Med Int Health. 2018;23(2):229-35. DOI: https://doi.org/10.1111/tmi.1301512.
Vieira-Neta MRA, Soares-da-Silva J, Viana JL, Silva MC, Tadei WP, Pinheiro VCS. Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). Braz J Biol. 2021;81(4):872-80. DOI: https://doi.org/10.1590/1519-6984.22879013.
Viana JL, Soares-da-Silva J, Vieira-Neta MRA, Tadei WP, Oliveira CD, Abdalla FC, et al. Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). Braz J Biol. 2021;81:114-24. DOI: https://doi.org/10.1590/1519-6984.22338914.
Alves GB, Melo FL, Oliveira EE, Haddi K, Costa LTM, Dias ML, et al. Comparative genomic analysis and mosquito larvicidal activity of four Bacillus thuringiensis serovar. israelensis strains. Sci Rep. 2020;10(1):5518. DOI: https://doi.org/10.1038/s41598-020-60670-715.
González-Rizo A, Castañet CE, Companioni A, Menéndez Z, Hernández H, Magdalena-Rodríguez M, et al. Effect of Chlorine and Temperature on Larvicidal Activity of Cuban Bacillus thuringiensis Isolates. J Arthropod-Borne Dis. 2019;13(1):39-49.
González Rizo A, Menéndez Díaz Z, García García I, Anaya Martínez J, González Broche R, Calderón Camacho IR, et al. Detección de beta exotoxinas en aislamientos de Bacillus thuringiensis nativos de Cuba. Rev Cubana Med Trop. 2016;68(1):105-10.
Gonzalez A, Rodriguez G, Bruzon RY, Diaz M, Companionis A, Menendez Z, et al. Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. J Vector Ecol. 2013;38(1):46-52. DOI: https://doi.org/10.1111/j.1948-7134.2013.12007.x18.
Gonzalez A, Diaz R, Diaz M, Borrero Y, Bruzon RY, Carreras B, et al. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes. Rev Biol Trop. 2011;59(3):1007-16.
Mancebo A, González Navarro B, Riera L, Lugo S, González Torres Y, Arteaga M, et al. Evaluación de la toxicidad/patogenicidad de una formulación de Bacillus thuringiensis var israelensis (Bactivec). Rev de Toxicol. 2003;20(3):204-9.
Leary S, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, et al. AVMA Guidelines for the Euthanasia of Animals. E.U. American Veterinary Medical Association. 2013 Edition. [Consultado 17/06/2017]. Disponible en: http://www.purdue.edu/docs/pdf21.
Askar M, Ashraf W, Scammell B, Bayston R. Comparison of different human tissue processing methods for maximization of bacterial recovery. Eur J Clin Microbiol. 2019;38:149-55. DOI: https://doi.org/10.1007/s10096-018-3406-422.
Tsao GT. Principles of microbe and cell cultivation, S. John Pirt, Halsted Press, Division of John Wiley and Sons, New York, 274 pages. AIChE Journal. 1976;22(3):621. DOI: https://doi.org/10.1002/aic.69022034223.
WHO. Guidelines for laboratory and field testing of mosquito larvicides. Geneva, Switzerland: World Health Organization; 2005. [Consultado 06/02/2010]. Disponible en: Disponible en: https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pdf 24.
Perez O, Rodríguez J, Bisset J, Leyva M, Díaz M, Fuentes O, et al. Manual de Indicaciones Técnicas para insectarios. Ciudad de La Habana: Editorial Ciencias Medicas ECIMED; 2004. 59 p.
Finney JD. Probit analysis. 3rd ed. Press CU; 1971. 333 p.
DOUE-L-2010-81868. Directiva 2010/63/UE del Parlamento Europeo y del Consejo, de 22 de septiembre de 2010, relativa a la protección de los animales utilizados para fines científicos. 2010 [Consultado 17/06/2017]. Disponible en: http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:32010L006327.
PAHO. Métodos de vigilancia entomológica y control de los principales vectores en las Américas. Washington, D.C.: Organización Panamericana de la Salud; 2021. DOI: https://doi.org/10.37774/978927532395328.
Marquetti MC, Carrazana M, Leyva M, Bisset J. Factores relacionados con la presencia de Aedes aegypti (Diptera:Culicidae) en dos regiones de Cuba. Rev Cubana Med Trop. 2010;62(2):112-8.
Marquetti MC, Suárez S, Bisset J, Leyva M. Reporte de hábitats utilizados por Aedes aegypti en Ciudad de La Habana, Cuba. Rev Cubana Med Trop. 2005;57(2):159-61.
Bishop A, Johnson C, Perani M. The safety of Bacillus thuringiensis to mammals investigated by oral and subcutaneous dosage. World J Microbiol Biotechnol. 1999;15:375-80. DOI: https://doi.org/10.1023/A:100898381869231.
Berlitz DL, Giovenardi M, Charles J-F, Fiúza LM. Toxicity intraperitoneal and intragastric route of Bacillus thuringiensis and melia azedarach in mice. Arq Inst Biol, São Paulo. 2012;79(4):511-7.
García-Gómez BI, Cano SN, Zagal EE, Dantán-Gonzalez E, Bravo A, Soberón M. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. mBio. 2019;10(6):e02775-19. DOI: https://doi.org/10.1128/mBio.02775-1933.
Ritchie SA, Rapley LP, Benjamin S. Bacillus thuringiensis var. israelensis (Bti) Provides Residual Control of Aedes aegypti in Small Containers. Am J Trop Med Hyg. 2010;82(6):1053-9. DOI: https://doi.org/10.4269/ajtmh.2010.09-060334.
Sukesi TW, Hendrawati E, Mulasari S. Effectivity of bacterial suspension Bacillus thuringiensis var israelensis in Killing Aedes aegypti L. mosquito larvae. Bangladesh J Med Sci. 2019;18(4):706-10. DOI: https://doi.org/10.33.29/bjms.v18i4:4287335.
Thomas W, Trintchina E, Forero M, Vogel V, Sokurenko E. Bacterial adhesion to target cells enhanced by shear force. Cell. 2002;109(7):921-23. DOI: https://doi.org/10.1016/s0092-8674(02)00796-136.
Gomez de Leon P, Ibarra JE, Bravo A, Garcia-Gutierrez K. Adhesion Capacity of Bacillus thuringiensis Spores and its Relation with Biofilm Formation. SOJ Microbiol Infect Dis. 2015;3(2):1-6.
Tetreau G, Alessi M, Veyrenc S, Perigon S, David J, Reynaud S, et al. Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol. 2012;78(23):8362-7. DOI: https://doi.org/10.1128/AEM.02088-1238.
Duchet C, Tetreau G, Marie A, Rey D, Besnard G, Perrin Y, et al. Persistence and Recycling of Bioinsecticidal Bacillus thuringiensis subsp. israelensis Spores in Contrasting Environments: Evidence from Field Monitoring and Laboratory Experiments. Microb Ecol. 2014;67(3):576-86. DOI: https://doi.org/10.1007/s00248-013-0360-739.