2004, Number 1-2
<< Back
Microbiología 2004; 46 (1-2)
The PQQ-dehydrogenases.A novel example of bacterial quinoproteins
Flores-Encarnación M, Sánchez-Cuevas M, Ortiz-Gutiérrez F
Language: Spanish
References: 95
Page: 47-59
PDF size: 146.94 Kb.
ABSTRACT
The word “quinoprotein” describes four groups of different enzymes which have cofactors containing o-quinones. Pyrrolo-quinoline quinone (PQQ) is not covalently attached. PQQ is the cofactor of several quinoprotein bacterial dehydrogenases including glucose dehydrogenase (G-DH), alcohol dehydrogenase (A-DH) and aldehyde dehydrogenase (AL-DH). These dehydrogenases are located in the periplasm of Gram-negative bacteria. This report summarises the structural properties of quinoprotein dehydrogenases, such as the biological functions and biotechnological aspects more important.
REFERENCES
Adamowicz, M., T. Conway & K.W. Nickerson. 1991. Nutritional complementation of oxidase glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Duodoroff pathway. Appl. Env. Microbiol. 57:2012-2015.
Ameyama, M. & O. Adachi. 1982a. Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. 89, pp. 451-457. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M. & O. Adachi. 1982b. Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. 89, pp. 491-497. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M. & O. Adachi. 1982c. D-glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. 89, pp. 149-154. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M., M. Nonome, M. Hayashi, E. Shinagawa, K. Matsushita & O. Adachi. 1985. Mode of binding of pyrroloquinoline quinone to apo-glucose dehydrogenase. Agric. Biol. Chem. 49:1227-1231.
Ameyama, M., M. Nonome, E. Shinagawa, K. Matsushita, K. Takimoto & O. Adachi. 1986. Purification and characterization of the quinoprotein D-glucose dehydrogenase apoenzyme from Escherichia coli. Agric. Biol. Chem. 50:49-57.
Ameyama, M., K. Matsushita, E. Shinawaga & O. Adachi. 1991. Biochemical and physiological functions of pyrroloquinoline quinone. Vit. and Horm. 46:229-278.
Anthony, C. 1993a. The role of quinoproteins in bacteria energy transduction, pp. 223-244. In D.L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
Anthony, C. 1993b. Methanol dehydrogenase in gram-positive bacteria. pp. 17-45. In V. Davidson (ed). Principles and applications of quinoproteins. Dekker. New York.
Anthony, C., M. Ghosh, & C.C.F. Blake. 1994. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem. J. 304:665-674.
Anthony, C. 1996. Quinoprotein-catalyzed reactions. Biochem. J. 320:697-711.
Attwood, M.M., P. Johannes, P. Van Dijken & J.T. Pronk. 1991. Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J. Ferment. Bioengin. 72:101-105.
Avezoux, A., M.G. Matthew & C. Anthony. 1995. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Biochem. J. 307:735-741.
Babu-Khan, S., T.C. Yeo, W.L. Martin, M.R. Duron, R. D. Rogers & A. H. Golstein. 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61:972-978.
Bernardelli, C.E., M.F. Luna, M.L. Galar & J.L. Boiardi. 2001. Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic Rhizobia. Curr. Microbiol. 42:310-315.
Boiardi, J.L., M.L. Galar & O.M. Neijssel. 1996. PQQ-linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia. FEMS Microbiol. Lett. 140:179-184.
Chan, H.T.C. & C. Anthony. 1991. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus. Biochem. J. 280:139-146.
Cozier, G.E. & C. Anthony. 1995. Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem. J. 312:679-685.
Cozier, G.E., R.A. Salleh & C. Anthony. 1999. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem. J. 340:639-647.
Dalton, H. & J.R. Postgate. 1969. Effect of oxygen on grown of Azotobacter chrococcum continuos cultures. J. Gen Microbiol. 54:463-468.
Davison, V.L. 1993. Methylamine dehydrogenase. pp. 73-85. In V. Davidson (ed). Principles and applications of quinoproteins. Dekker. New York.
D´Costa, E.J., I.J. Higgins, A.P. Turner. 1986. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors. 2:71-87.
Dejonge, R., M.J.T. Demattos, O.M. Neijssel, J.B. Stock & O.M. Neijssel. 1996. Pyrroloquinoline quinone, a chemotactic attractant for Escherichia coli. J. Bacteriol. 178:1224-1226.
Dokter, P., F. Jzn & J.A. Duine. 1986. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Biochem. J. 239:163-167.
Duine, J.A., J. Frank, & P.E.J. Verwiel. 1980. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108:187-192.
Duine, J.A. 1989. PQQ and quinoproteins: an important novel field in enzymology. Anton van Leeuwenhoek. 56:3-12.
Duine, H. 1991. Quinoproteins: enzymes containing the quinonoid cofactor pyrrolo-quinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur. J. Biochem. 200:271-284.
Felder, M., A. Gupta., V. Verma, A. Kumar, N.G. Qazi & J. Cullum. 2000. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans. FEMS Microbiol. 193:231-236.
Flores-Encarnación, M., M. Contreras-Zentella, L. Soto-Urzúa, G.A. Aguilar, B.E. Baca & J.E. Escamilla. 1999. The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J. Bacteriol. 181:6987-6995.
Galar, M.L. & J.l. Boiardi. 1995. Evidence for a membrane-bound pyrroloquinoline quinone-linked glucose dehydrogenase in Acetobacter diazotrophicus. Appl. Microbiol. Biotechnol. 43:713-716.
Goodwin, M.G. & C. Anthony. 1996. Characterization of a novel methanol dehydrogenase containing a Ba+2 ion at the active site. Biochem. J. 318:673-679.
Goodwin, M.G., A. Avezoux., S.L. Dales & C. Anthony. 1996. Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca2+ -free enzyme with Ca+2, Sr+2 or Ba+2. Biochem. J. 319:839-842.
Goodwin, P.M. & C. Anthony. 1998. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv. Microb. Physiol. 40:1-80.
Goosen, N., D.A.M. Vermass & P. Van Deputte. 1987. Cloning of the genes involved in synthesis of coenzyme pyrroloquinoline-quinone from Acinetobacter calcoaceticus. J. Bacteriol. 169:303-307.
Goosen, N., H.P. Horsman, R.G. Huine & P. Van Deputte. 1989. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide secuence and expression in Escherichia coli K-12. J. Bacteriol. 171:447-455.
Goosen, N., R.G. Huine & P. Van Deputte. 1992. A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J. Bacteriol. 174:1426-1427.
Hill, S. 1988. How is nitrogenase regulated by oxygen? FEMS Microbiol. Lett. 54:111-130.
Hamagishi, Y., S. Murata, H. Kamei, T. Oki & M. Ameyama. 1989. Novel pharmacological activity of a novel cofactor PQQ. Radical scavenger-like activity. Abstr. Annu. Meet. Jpn. Pharmacol. Soc., 109 th. pp. 42.
Hommel, R. & H.P. Kleber. 1990. Properties of the quinoprotein aldehyde dehydrogenase from Acetobacter rancens. J. Gen. Microbiol. 136:1705-1711.
Hommes R.W. J., B. Van Hell, P.W. Postma, O.M. Neijssel & D.W. Tempest. 1985. The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch. Microbiol. 143:163-168.
Iswantini, D., K. Kano & T. Ikeda. 2000. Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia cells. Biochem. J. 350:917-923.
Itoh, S., H. Kawakami & S. Fukuzumi. 1998. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca+2 for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxilic acid). Biochem. 37:6562-6571.
Jawad, S. & M. Paoli. 2002. Novel sequences propel familiar folds. Struct. 10:447-454.
Katsumata, M., Y. Ohsawa, C. Nakagiri & S. Nakano. 1988. Anti-cataract agent. Jpn. Pat. 63:41421-41425.
Kim, J. & D. Rees. 1994. Nitrogenase and biological nitrogen fixation. Biochemistry. 33:389-397.
Loughran, M.G., J.M. Hall, A.P. Turner & V.L. Davidson. 1995. Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode. Biosens. Biolectron. 10:569-576.
Maccarrone, M., G.A. Veldink & F.G. Vliegenthart. 1991. An investigation on the quinoprotein nature of some fungi and plant oxidoreductases. J. Biol. Chem. 266:21014-21017.
Marison, I. W. & M.M. Attwood. 1980. Partial purification and characterization of the dye-linked formaldehyde dehydrogenase from Hyphomicrobium X. J. Gen. Microbiol. 117:305-313.
Matsumoto, T., O. Susuki, H. Hayakawa, S. Ogiso, N. Hayakawa, Y. Nimura, I. Takashi & S. Shionoya. 1988. Effects of exogenous PQQ on mortality rate and some biochemical parameters during endotoxin shock in rats. pp. 162-164. In PQQ and quinoproteins. J. A. Jongejan and J. A. Duine (eds). Kluwer. The Hague.
Matsushita, K., E. Shinagawa, O. Adachi & M. Ameyama. 1989. Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J. Biochem. 105:633-637.
Matsushita, K., E. Shinagawa, O. Adachi & M. Ameyama. 1990. Cytochrome a1 of Acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Proc. Natl. Sci. USA. 87:9863-9867.
Matsushita, K., H. Ebisuya, M. Ameyama & O. Adachi. 1992a. Change of the terminal oxidase from cytochrome a1 in shaking cultures to cytochrome or in static cultures of Acetobacter aceti. J. Bacteriol. 174:122-129.
Matsushita, K., K. Takahashi, M. Takahashi, M. Ameyama & O. Adachi. 1992b. Metanol and ethanol-oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J. Biochem. 111:739-747.
Matsushita, K., K. Takahashi, M. Takahashi, M. Ameyama & O. Adachi. 1992c. Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J. Biochem. 111:739-747.
Matsushita, K., H. Toyama & O. Adachi. 1994. Respiratory chains and bioenergetics of acetic bacteria. Adv. Microbial. Physiol. 36:247-301.
Matsushita, K., J.C. Arents, B. Rader, M. Yamada, O. Adachi & P.W. Postma. 1997. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiol. 143:3149-3156.
Matsushita, K., H. Toyama & O. Adachi. 2002. Quinoproteins: structure, function, and biotechnological applications. Appl. Microbiol. Biotechnol. 58:13-22.
Meulenberg, J.J., E. Sellink, N.H. Riegman & P.W. Postma. 1992. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol. Gen. Genet. 232:284-294.
McIntire, W.S., D.E. Wemmer, A. Chistoserdov & M.E. Lidstrom. 1991. A new cofactor in a prokaryotic enzime: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science. 252:817-824.
McIntire, W.S. & C. Hartmann, 1993. Copper-containing amine oxidases. pp. 97-332. In D. L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
McIntire, W.S. Quinoproteins. 1994. The FASEB J. 8:513-519.
McIntire, W.S. 1998. Newly discovered redox cofactors: possible nutritional medical and pharmacological relevance to higher animals. Ann. Rev. Nutr. 18:145-177.
Morris, C.J., F. Biville, E. Turlin, E. Lee, K. Ellermann, W.H. Fan, R. Ramamoorthi, A.L. Springer & M.E. Lidstrom. 1994. Isolation, phenotypic characterization and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesis pyrroloquinoline quinone and secuences of pqqD, pqqG and pqqC. J. Bacteriol. 176:1746-1755.
Neijssel, O.M., R.W. J. Hommes, P.W. Postma & D.W. Tempest. 1989. Physiological significs and bioenergetic aspects of glucose dehydrogenase. Anton van Leeuwenhoek. 56: 51-61.
Nishigori, H., M. Yasunaga, M. Mizumura, J.W. Lee & M. Iwatsuru. 1989. Preventive effects of pyrroloquinoline quinone on formation of cataract and decline of lenticular and hepatic glutathione of developing chick embryo after glucocorticoid treatment. Life Sci. 45:593-598.
Ohshiro, Y. & S. Itoh. 1993. The chemistry of PQQ and related compounds. pp. 309-341. In D.L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
O´Gara, F.O., K. Birkenhead, B. Boesten & A.M. Fitzmaurice. 1989. Carbon metabolism and catabolic repression in Rhizobium spp. FEMS Microbiol. Lett. 63:93-102.
Olsthoorn, A.J.J., T. Otsuki & J.A. Duine. 1997. Ca+2 and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline quinone-containing) glucose dehydrogenase. Eur. J. Biochem. 247:659-665.
Oubrie, A., H.J. Rozeboom, K.H. Kalk, A.J.J. Olsthoorn, J.A. Duine & B.W. Dijkstra. 1999a. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. The EMBO J. 18:5187-5194.
Oubrie, A.H., H.J. Rozeboom & B.W. Dijkstra. 1999b. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: A covalent cofactor-inhibitor complex. Proc. Natl. Sci. USA. 96:11787-11791.
Oubrie, A. & B.W. Dijktra. 2000. Structural requirements of pyrroloquinoline quinone dependent enzymes. Protein Sci. 9:1265-1273.
Reis, V.M. F., F.L. Olivares & J. Dobereiner. 1994. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10:401-405.
Sato. A., T.K. Takagi, K. Kano, N. Kato, J.A. Duine & T. Ikeda. 2001. Ca+2 stabilizes the semiquinone radical of pyrroloquinoline quinone. Biochem. J. 357:893-898.
Schnider, U., C. Keel, C. Voisard, G. Defago & D. Haas. 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHAO: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl. Enviroment. Microbiol. 61:3856-3864.
Slealth, P.R., J.B. Noar, G.A. Eberlein & T.C. Bruice. 1985. Synthesis of 7,9 -didecarboxymethoxantin (4,5 – dihydro - 4,5 – dioxo - 1H-pyrrolo - 2,3 -fquinoline-2-carboxilic acid) and comparison of its chemical properties with those methoxantin and analogous o-quinones. Model studies directed towards the action of PQQ-requiring bacterial oxidoreductases and mammalian plasma amine oxidase. J. Am. Chem. Soc. 107:3328-3338.
Sode K., K. Ito, A.B. Witarto, K. Watanabe, H. Yoshida & P. Postma. 1996. Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabollically engineered Escherichia coli strain capable of PQQ biosynthesis. J. Biotechnol. 49:239-243.
Steinebach, V., S. de Vries & J.A. Duinet. 1996. Intermediates in the catalytic cycle of copper-quinoprotein amine oxidase from Escherichia coli. J. Biol. Chem. 271:5580-5588.
Stephan, M.P., M. Oliveira, K.R.S. Teixeira, G. Martínez-Drets & J. Dobereiner. 1991. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol. Lett. 77: 67-72.
Stites, T.E., E.A.E. Mitchell & R.B. Rucker. 2000. Physiological importance of quinoenzymes and the o-quinone family of cofactors. J. Nutr. 130:719-727.
Toyama, H., A. Fujii, K. Matsushita, E. Shinagawa, M. Ameyama & O. Adachi. 1995. Three distinc quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177:2442-2450.
Toyama, H. & M.E. Lidstrom. 1998. PqqA is not requered for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Microbiol. 144:183-191.
Urakami, T., K. Yashima, H. Kobayashi, A. Yoshida & I.C. Yoshida. 1992. Production of pyrroloquinoline quinone by using methanol-utilizing bacteria. Appl. Environment. Microbiol. 58:3970-3976.
Ureta, A. & S. Nordlund. 2002. Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. J. Bacteriol. 184:5805-5809.
Van der Meer, R.A.B., J.A. Jongejan & J.A. Duine. 1989. Pyrroloquinoline quinone as cofactor of galactose oxidase. J. Biol. Chem. 264:7792-7794.
Van der Meer, R.A., B.W. Groen, M.A.G., V. Kleef, J. Frank, J.A. Jongejan & J.A. Duine. 1990. Isolation, preparation, and assay of pyrroloquinoline quinone. 188. pp. 260-283. In W.A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Van Kleff, M.A.G. & J.A. Duine. 1988a. A search for intermediates in the bacterial biosynthesis of PQQ. Biofactors. 1:297-302.
Van Kleff, M.A.G. & J.A. Duine. 1988b. L-Tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS Lett. 237:91-97.
Van Rhijn, P. & J. Vanderleyden. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59:124-142.
Van Schie, B.J., K.J. Hellingwerf, J.P. Van Dijken, M.G.L. Elferink, J. van Dijl, J.G. Kuenen & W.N. Konings. 1985. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. Iwoffi). J. Bacteriol. 163:493-499.
Van Schie, B.J., O.H. De Mooy, J.D. Linton, J.P. Van Dijken & J.G. Kuenen. 1987. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol. 133:867-875.
Velterop, J.S., J.J.M. Sellink, M. Meulenberg, S. David, L. Bulder & P.W. Postma. 1995. Synthesis of pyrrolo-quinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J. Bacteriol. 177:5088-5096.
Yamada, M., K. Sumi, K. Matsushita, O. Adachi & Y. Yamada. 1993. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem. 268:12821-12817.
Zhang, X., J.H. Fuller & W.S. McIntire. 1993. Cloning, sequencing, expression, and regulation of the structural gene for the copper/topa quinone-containing methylamine oxidase from Arthrobacter strain P1, a Gram-positive facultative methylotroph. J. Bacteriol. 175:5617-5627.
Zheng, Y.J. & T.C. Bruice. 1997. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc. Natl. Acad. Sci. USA. 94:11881-11886.
Zheng, Y.J., Z.X. Xia, Z.W. Chen, F.S. Mathews & T.C. Bruice. 2001. Catalytic mechanism of quinoprotein methanol dehydrogenase: A theoretical and X-ray crystallographic investigation. Proc. Natl. Sci. USA. 98:432-434.