2004, Número 1-2
<< Anterior
Microbiología 2004; 46 (1-2)
Las PQQ-deshidrogenasas. Un novedoso ejemplo de quinoproteínas bacterianas
Flores-Encarnación M, Sánchez-Cuevas M, Ortiz-Gutiérrez F
Idioma: Español
Referencias bibliográficas: 95
Paginas: 47-59
Archivo PDF: 146.94 Kb.
RESUMEN
La palabra “quinoproteína” se refiere a cuatro grupos de enzimas diferentes, las cuales contienen o-quinonas como cofactores. La quinona de pirroloquinolina (PQQ) no está unida covalentemente. El grupo PQQ es el cofactor de algunas deshidrogenasas quinoproteicas bacterianas, que incluyen a la glucosa deshidrogenasa (G-DH), alcohol deshidrogenasa (A-DH) y a la aldehído deshidrogenasa (AL-DH). Estas deshidrogenasas se localizan en el espacio periplásmico de las bacterias Gram negativas. Este trabajo muestra un resumen acerca de las propiedades estructurales de las deshidrogenasas quinoproteicas, así como las funciones biológicas y los aspectos biotecnológicos más relevantes.
REFERENCIAS (EN ESTE ARTÍCULO)
Adamowicz, M., T. Conway & K.W. Nickerson. 1991. Nutritional complementation of oxidase glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Duodoroff pathway. Appl. Env. Microbiol. 57:2012-2015.
Ameyama, M. & O. Adachi. 1982a. Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. 89, pp. 451-457. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M. & O. Adachi. 1982b. Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. 89, pp. 491-497. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M. & O. Adachi. 1982c. D-glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. 89, pp. 149-154. In W. A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Ameyama, M., M. Nonome, M. Hayashi, E. Shinagawa, K. Matsushita & O. Adachi. 1985. Mode of binding of pyrroloquinoline quinone to apo-glucose dehydrogenase. Agric. Biol. Chem. 49:1227-1231.
Ameyama, M., M. Nonome, E. Shinagawa, K. Matsushita, K. Takimoto & O. Adachi. 1986. Purification and characterization of the quinoprotein D-glucose dehydrogenase apoenzyme from Escherichia coli. Agric. Biol. Chem. 50:49-57.
Ameyama, M., K. Matsushita, E. Shinawaga & O. Adachi. 1991. Biochemical and physiological functions of pyrroloquinoline quinone. Vit. and Horm. 46:229-278.
Anthony, C. 1993a. The role of quinoproteins in bacteria energy transduction, pp. 223-244. In D.L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
Anthony, C. 1993b. Methanol dehydrogenase in gram-positive bacteria. pp. 17-45. In V. Davidson (ed). Principles and applications of quinoproteins. Dekker. New York.
Anthony, C., M. Ghosh, & C.C.F. Blake. 1994. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem. J. 304:665-674.
Anthony, C. 1996. Quinoprotein-catalyzed reactions. Biochem. J. 320:697-711.
Attwood, M.M., P. Johannes, P. Van Dijken & J.T. Pronk. 1991. Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J. Ferment. Bioengin. 72:101-105.
Avezoux, A., M.G. Matthew & C. Anthony. 1995. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Biochem. J. 307:735-741.
Babu-Khan, S., T.C. Yeo, W.L. Martin, M.R. Duron, R. D. Rogers & A. H. Golstein. 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61:972-978.
Bernardelli, C.E., M.F. Luna, M.L. Galar & J.L. Boiardi. 2001. Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic Rhizobia. Curr. Microbiol. 42:310-315.
Boiardi, J.L., M.L. Galar & O.M. Neijssel. 1996. PQQ-linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia. FEMS Microbiol. Lett. 140:179-184.
Chan, H.T.C. & C. Anthony. 1991. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus. Biochem. J. 280:139-146.
Cozier, G.E. & C. Anthony. 1995. Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem. J. 312:679-685.
Cozier, G.E., R.A. Salleh & C. Anthony. 1999. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem. J. 340:639-647.
Dalton, H. & J.R. Postgate. 1969. Effect of oxygen on grown of Azotobacter chrococcum continuos cultures. J. Gen Microbiol. 54:463-468.
Davison, V.L. 1993. Methylamine dehydrogenase. pp. 73-85. In V. Davidson (ed). Principles and applications of quinoproteins. Dekker. New York.
D´Costa, E.J., I.J. Higgins, A.P. Turner. 1986. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors. 2:71-87.
Dejonge, R., M.J.T. Demattos, O.M. Neijssel, J.B. Stock & O.M. Neijssel. 1996. Pyrroloquinoline quinone, a chemotactic attractant for Escherichia coli. J. Bacteriol. 178:1224-1226.
Dokter, P., F. Jzn & J.A. Duine. 1986. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Biochem. J. 239:163-167.
Duine, J.A., J. Frank, & P.E.J. Verwiel. 1980. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108:187-192.
Duine, J.A. 1989. PQQ and quinoproteins: an important novel field in enzymology. Anton van Leeuwenhoek. 56:3-12.
Duine, H. 1991. Quinoproteins: enzymes containing the quinonoid cofactor pyrrolo-quinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur. J. Biochem. 200:271-284.
Felder, M., A. Gupta., V. Verma, A. Kumar, N.G. Qazi & J. Cullum. 2000. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans. FEMS Microbiol. 193:231-236.
Flores-Encarnación, M., M. Contreras-Zentella, L. Soto-Urzúa, G.A. Aguilar, B.E. Baca & J.E. Escamilla. 1999. The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J. Bacteriol. 181:6987-6995.
Galar, M.L. & J.l. Boiardi. 1995. Evidence for a membrane-bound pyrroloquinoline quinone-linked glucose dehydrogenase in Acetobacter diazotrophicus. Appl. Microbiol. Biotechnol. 43:713-716.
Goodwin, M.G. & C. Anthony. 1996. Characterization of a novel methanol dehydrogenase containing a Ba+2 ion at the active site. Biochem. J. 318:673-679.
Goodwin, M.G., A. Avezoux., S.L. Dales & C. Anthony. 1996. Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca2+ -free enzyme with Ca+2, Sr+2 or Ba+2. Biochem. J. 319:839-842.
Goodwin, P.M. & C. Anthony. 1998. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv. Microb. Physiol. 40:1-80.
Goosen, N., D.A.M. Vermass & P. Van Deputte. 1987. Cloning of the genes involved in synthesis of coenzyme pyrroloquinoline-quinone from Acinetobacter calcoaceticus. J. Bacteriol. 169:303-307.
Goosen, N., H.P. Horsman, R.G. Huine & P. Van Deputte. 1989. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide secuence and expression in Escherichia coli K-12. J. Bacteriol. 171:447-455.
Goosen, N., R.G. Huine & P. Van Deputte. 1992. A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J. Bacteriol. 174:1426-1427.
Hill, S. 1988. How is nitrogenase regulated by oxygen? FEMS Microbiol. Lett. 54:111-130.
Hamagishi, Y., S. Murata, H. Kamei, T. Oki & M. Ameyama. 1989. Novel pharmacological activity of a novel cofactor PQQ. Radical scavenger-like activity. Abstr. Annu. Meet. Jpn. Pharmacol. Soc., 109 th. pp. 42.
Hommel, R. & H.P. Kleber. 1990. Properties of the quinoprotein aldehyde dehydrogenase from Acetobacter rancens. J. Gen. Microbiol. 136:1705-1711.
Hommes R.W. J., B. Van Hell, P.W. Postma, O.M. Neijssel & D.W. Tempest. 1985. The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch. Microbiol. 143:163-168.
Iswantini, D., K. Kano & T. Ikeda. 2000. Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia cells. Biochem. J. 350:917-923.
Itoh, S., H. Kawakami & S. Fukuzumi. 1998. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca+2 for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxilic acid). Biochem. 37:6562-6571.
Jawad, S. & M. Paoli. 2002. Novel sequences propel familiar folds. Struct. 10:447-454.
Katsumata, M., Y. Ohsawa, C. Nakagiri & S. Nakano. 1988. Anti-cataract agent. Jpn. Pat. 63:41421-41425.
Kim, J. & D. Rees. 1994. Nitrogenase and biological nitrogen fixation. Biochemistry. 33:389-397.
Loughran, M.G., J.M. Hall, A.P. Turner & V.L. Davidson. 1995. Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode. Biosens. Biolectron. 10:569-576.
Maccarrone, M., G.A. Veldink & F.G. Vliegenthart. 1991. An investigation on the quinoprotein nature of some fungi and plant oxidoreductases. J. Biol. Chem. 266:21014-21017.
Marison, I. W. & M.M. Attwood. 1980. Partial purification and characterization of the dye-linked formaldehyde dehydrogenase from Hyphomicrobium X. J. Gen. Microbiol. 117:305-313.
Matsumoto, T., O. Susuki, H. Hayakawa, S. Ogiso, N. Hayakawa, Y. Nimura, I. Takashi & S. Shionoya. 1988. Effects of exogenous PQQ on mortality rate and some biochemical parameters during endotoxin shock in rats. pp. 162-164. In PQQ and quinoproteins. J. A. Jongejan and J. A. Duine (eds). Kluwer. The Hague.
Matsushita, K., E. Shinagawa, O. Adachi & M. Ameyama. 1989. Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J. Biochem. 105:633-637.
Matsushita, K., E. Shinagawa, O. Adachi & M. Ameyama. 1990. Cytochrome a1 of Acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Proc. Natl. Sci. USA. 87:9863-9867.
Matsushita, K., H. Ebisuya, M. Ameyama & O. Adachi. 1992a. Change of the terminal oxidase from cytochrome a1 in shaking cultures to cytochrome or in static cultures of Acetobacter aceti. J. Bacteriol. 174:122-129.
Matsushita, K., K. Takahashi, M. Takahashi, M. Ameyama & O. Adachi. 1992b. Metanol and ethanol-oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J. Biochem. 111:739-747.
Matsushita, K., K. Takahashi, M. Takahashi, M. Ameyama & O. Adachi. 1992c. Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J. Biochem. 111:739-747.
Matsushita, K., H. Toyama & O. Adachi. 1994. Respiratory chains and bioenergetics of acetic bacteria. Adv. Microbial. Physiol. 36:247-301.
Matsushita, K., J.C. Arents, B. Rader, M. Yamada, O. Adachi & P.W. Postma. 1997. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiol. 143:3149-3156.
Matsushita, K., H. Toyama & O. Adachi. 2002. Quinoproteins: structure, function, and biotechnological applications. Appl. Microbiol. Biotechnol. 58:13-22.
Meulenberg, J.J., E. Sellink, N.H. Riegman & P.W. Postma. 1992. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol. Gen. Genet. 232:284-294.
McIntire, W.S., D.E. Wemmer, A. Chistoserdov & M.E. Lidstrom. 1991. A new cofactor in a prokaryotic enzime: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science. 252:817-824.
McIntire, W.S. & C. Hartmann, 1993. Copper-containing amine oxidases. pp. 97-332. In D. L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
McIntire, W.S. Quinoproteins. 1994. The FASEB J. 8:513-519.
McIntire, W.S. 1998. Newly discovered redox cofactors: possible nutritional medical and pharmacological relevance to higher animals. Ann. Rev. Nutr. 18:145-177.
Morris, C.J., F. Biville, E. Turlin, E. Lee, K. Ellermann, W.H. Fan, R. Ramamoorthi, A.L. Springer & M.E. Lidstrom. 1994. Isolation, phenotypic characterization and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesis pyrroloquinoline quinone and secuences of pqqD, pqqG and pqqC. J. Bacteriol. 176:1746-1755.
Neijssel, O.M., R.W. J. Hommes, P.W. Postma & D.W. Tempest. 1989. Physiological significs and bioenergetic aspects of glucose dehydrogenase. Anton van Leeuwenhoek. 56: 51-61.
Nishigori, H., M. Yasunaga, M. Mizumura, J.W. Lee & M. Iwatsuru. 1989. Preventive effects of pyrroloquinoline quinone on formation of cataract and decline of lenticular and hepatic glutathione of developing chick embryo after glucocorticoid treatment. Life Sci. 45:593-598.
Ohshiro, Y. & S. Itoh. 1993. The chemistry of PQQ and related compounds. pp. 309-341. In D.L. Davidson (ed). Principles and Applications of Quinoproteins. M. Dekker. New York.
O´Gara, F.O., K. Birkenhead, B. Boesten & A.M. Fitzmaurice. 1989. Carbon metabolism and catabolic repression in Rhizobium spp. FEMS Microbiol. Lett. 63:93-102.
Olsthoorn, A.J.J., T. Otsuki & J.A. Duine. 1997. Ca+2 and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline quinone-containing) glucose dehydrogenase. Eur. J. Biochem. 247:659-665.
Oubrie, A., H.J. Rozeboom, K.H. Kalk, A.J.J. Olsthoorn, J.A. Duine & B.W. Dijkstra. 1999a. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. The EMBO J. 18:5187-5194.
Oubrie, A.H., H.J. Rozeboom & B.W. Dijkstra. 1999b. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: A covalent cofactor-inhibitor complex. Proc. Natl. Sci. USA. 96:11787-11791.
Oubrie, A. & B.W. Dijktra. 2000. Structural requirements of pyrroloquinoline quinone dependent enzymes. Protein Sci. 9:1265-1273.
Reis, V.M. F., F.L. Olivares & J. Dobereiner. 1994. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10:401-405.
Sato. A., T.K. Takagi, K. Kano, N. Kato, J.A. Duine & T. Ikeda. 2001. Ca+2 stabilizes the semiquinone radical of pyrroloquinoline quinone. Biochem. J. 357:893-898.
Schnider, U., C. Keel, C. Voisard, G. Defago & D. Haas. 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHAO: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl. Enviroment. Microbiol. 61:3856-3864.
Slealth, P.R., J.B. Noar, G.A. Eberlein & T.C. Bruice. 1985. Synthesis of 7,9 -didecarboxymethoxantin (4,5 – dihydro - 4,5 – dioxo - 1H-pyrrolo - 2,3 -fquinoline-2-carboxilic acid) and comparison of its chemical properties with those methoxantin and analogous o-quinones. Model studies directed towards the action of PQQ-requiring bacterial oxidoreductases and mammalian plasma amine oxidase. J. Am. Chem. Soc. 107:3328-3338.
Sode K., K. Ito, A.B. Witarto, K. Watanabe, H. Yoshida & P. Postma. 1996. Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabollically engineered Escherichia coli strain capable of PQQ biosynthesis. J. Biotechnol. 49:239-243.
Steinebach, V., S. de Vries & J.A. Duinet. 1996. Intermediates in the catalytic cycle of copper-quinoprotein amine oxidase from Escherichia coli. J. Biol. Chem. 271:5580-5588.
Stephan, M.P., M. Oliveira, K.R.S. Teixeira, G. Martínez-Drets & J. Dobereiner. 1991. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol. Lett. 77: 67-72.
Stites, T.E., E.A.E. Mitchell & R.B. Rucker. 2000. Physiological importance of quinoenzymes and the o-quinone family of cofactors. J. Nutr. 130:719-727.
Toyama, H., A. Fujii, K. Matsushita, E. Shinagawa, M. Ameyama & O. Adachi. 1995. Three distinc quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177:2442-2450.
Toyama, H. & M.E. Lidstrom. 1998. PqqA is not requered for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Microbiol. 144:183-191.
Urakami, T., K. Yashima, H. Kobayashi, A. Yoshida & I.C. Yoshida. 1992. Production of pyrroloquinoline quinone by using methanol-utilizing bacteria. Appl. Environment. Microbiol. 58:3970-3976.
Ureta, A. & S. Nordlund. 2002. Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. J. Bacteriol. 184:5805-5809.
Van der Meer, R.A.B., J.A. Jongejan & J.A. Duine. 1989. Pyrroloquinoline quinone as cofactor of galactose oxidase. J. Biol. Chem. 264:7792-7794.
Van der Meer, R.A., B.W. Groen, M.A.G., V. Kleef, J. Frank, J.A. Jongejan & J.A. Duine. 1990. Isolation, preparation, and assay of pyrroloquinoline quinone. 188. pp. 260-283. In W.A. Wood (ed). Methods in Enzymology. Academic Press In. London.
Van Kleff, M.A.G. & J.A. Duine. 1988a. A search for intermediates in the bacterial biosynthesis of PQQ. Biofactors. 1:297-302.
Van Kleff, M.A.G. & J.A. Duine. 1988b. L-Tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS Lett. 237:91-97.
Van Rhijn, P. & J. Vanderleyden. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59:124-142.
Van Schie, B.J., K.J. Hellingwerf, J.P. Van Dijken, M.G.L. Elferink, J. van Dijl, J.G. Kuenen & W.N. Konings. 1985. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. Iwoffi). J. Bacteriol. 163:493-499.
Van Schie, B.J., O.H. De Mooy, J.D. Linton, J.P. Van Dijken & J.G. Kuenen. 1987. PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol. 133:867-875.
Velterop, J.S., J.J.M. Sellink, M. Meulenberg, S. David, L. Bulder & P.W. Postma. 1995. Synthesis of pyrrolo-quinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J. Bacteriol. 177:5088-5096.
Yamada, M., K. Sumi, K. Matsushita, O. Adachi & Y. Yamada. 1993. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J. Biol. Chem. 268:12821-12817.
Zhang, X., J.H. Fuller & W.S. McIntire. 1993. Cloning, sequencing, expression, and regulation of the structural gene for the copper/topa quinone-containing methylamine oxidase from Arthrobacter strain P1, a Gram-positive facultative methylotroph. J. Bacteriol. 175:5617-5627.
Zheng, Y.J. & T.C. Bruice. 1997. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc. Natl. Acad. Sci. USA. 94:11881-11886.
Zheng, Y.J., Z.X. Xia, Z.W. Chen, F.S. Mathews & T.C. Bruice. 2001. Catalytic mechanism of quinoprotein methanol dehydrogenase: A theoretical and X-ray crystallographic investigation. Proc. Natl. Sci. USA. 98:432-434.