2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Industrial microbiology
Metabolic via engineering for the production of aromatic substances in Escherichia coli
Rhamnolipid synthesis through Pseudomonas aeruginosa
Sharing microbiology and oil biotechnology experiences
Gosset LG, Báez VJL, Osuna J, Hernández CG, Soberón X, Bolívar y Guillermo GF, Soberón CG, García H, Aguirre M, Delgado LM, González A, Toribio J, Villarreal A, Le Borgne S
Language: Spanish
References: 38
Page: 91-98
PDF size: 141.98 Kb.
ABSTRACT
In this review we cover the biological control of insects, bacteria and fungus that affect different crops. Using different microorganism as bacteria viruses and fungus can do the biological control of these important problems. In this work we describe with detail the mode of action of the different microorganisms used to control insects and plant diseases. We also present novel strategies to improve the efficiency of these microorganisms against their targets and we present the development and production of several formulations to be used in the fields for the biological control of some plant problems.
REFERENCES
Báez-Viveros J. L., Osuna J., Hernández-Chávez G., Soberón X., Bolívar F. & Gosset G. 2004. Metabolic Engineering and Protein Directed Evolution Increase the Yield of L-Phenylalanine Synthesized from Glucose in Escherichia coli. Biotechnology & Bioengineering, 87:516-524.
Bongaerts J., Krämer M., Müller U., Raeven L. & Wubbolts M. 2001. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289-300.
Flores N., Yong-Xiao J., Berry A., Bolivar F. & Valle F. 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620-623.
Frost J.W. & Lievense J. 1994. Prospects for biocatalytic synthesis of aromatics in the 21st century. J Chem 18:341-348.
Cabrera, N, A.-P. Richardson, C. Olvera, L. G. Trevińo, E. Déziel, F. Lépine & G. Soberón-Chávez. 2006. Mono-rhamnolipid and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl. Microbiol. Biotechnol. Aceptado para su publicación.
Campos-García, J., A. D. Caro, R. Nájera, R. M. Miller-Maier, R. A. Al-Tahhan, & G. Soberón-Chávez. 1998. The Pseudomonas aeruginosa rhlG gene encodes a NADPH-dependent b-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacteriol. 180:4442-4451.
Costerton, J. W. 1980. Pseudomonas aeruginosa in nature and disease, p. 15-24. In C. D. Sabath (ed.), Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber Publishers, Bern, Switzerland.
Déziel E., F. Lépine, S. Milot & R. Villemur. 2003. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa : 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol. 149:2005-2013.
Govan, J. R. W. & V. Deretic 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 60:539-574.
Hardalo, C. & S. C. Edberg. 1997. Pseudomonas aeruginosa: Assessment of risk from drinking water. Crit. Rev. Microbiol. 23:47-75.
Lyczak, J. B., C. L. Cannon & G. B. Pier. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and Infection 2:1051-1060.
Maier, M. R. & G. Soberón-Chávez. 2000. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54:625-633.
Martínez, A. & G. Soberón-Chávez. 2001. Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa IGB83. Appl. Microbiol. Biotechnol. 56:731-735.
Miller, R. M., 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 103(Suppl):59-62.
Mulligan, C. N. 2005. Environmental applications of biosurfactants. Environ. Pollut. 133:183-198.
Nikaido, H. 1998. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1:516-523.
Ochsner, U. A., A. Fiechter & J. Reiser. 1994. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol. Chem. 269:19787-19795.
Ochsner, U. A., J. Reiser, A. Fietcher & B. Witholt. 1995. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous host. Appl Environ. Microbiol. 61:3503-3506.
Olivera, E. R., D. Cenicero, R. Jodra, B. Minambres, B. García, et al. 2001. Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ. Microbiol. 3:612-618.
Olvera, C., J. B. Goldberg, R. Sánchez & G. Soberón-Chávez. 1999. Pseudomonas aeruginosa algC gene product participates in rhamnolipids biosynthesis. FEMS Microbiol. Lett. 179:85-90.
Rahim, R., L. L. Burrows, M. A. Monteiro, M. B. Perry & J. S. Lam. 2000. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiol. 146:2803-2814.
Rahim, R., U. A. Ochsner, C. Olvera, M. Graninger, P. Messner, J. S. Lam & G. Soberón-Chávez. 2001. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 40:708-718.
Schaeffer T. L., S. G. Cantwell, J. L. Brown, D. Watt & R. R. Fall. 1979. Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl. Environ. Microbiol. 38:742-746.
Soberón-Chávez, G., M. Aguirre-Ramírez & L. G. Ordóńez. 2005. Is Pseudomonas aeruginosa only sensing quorum? Critical Rev. Microbiol. 31:171-182.
Soberón-Chávez, G., M. Aguirre-Ramírez & R. Sánchez. 2005. The Pseudomonas aeruginosa RhlA enzyme is not only involved in rhamnolipid, but also in polyhydroxyalkanoate production. J. Ind. Microbiol. Biotechnol. 32:675-677
Soberón-Chávez, G., F. Lépine & E. Déziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68:718-725.
Soberón-Chávez G. & B Palmeros. 1994. Pseudomonas lipases: Molecular genetics and potential industrial applications. Critical Rev. Microbiol. 20:95-105.
Stanghellini M. E. & R. M. Miller. 1997. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Diseas 81:4-12
van Delden, C. & B. H. Iglewski. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4:551-560.
Alcántara-Pérez S., Muńoz-Colunga A.M., Le Borgne S. & Olguín-Lora P. 2005. Molecular and physiological characterization of haloalkaliphilic sulfur-oxidizing microbial cultures from Mexican saline alkaline environments. En preparación.
Castorena G., Suárez C., Váldez I., Amador G., Fernández L. & Le Borgne S. 2002. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol. Lett. 215: 157-161.
EPA. 2000. Heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements. EPA420-F-00-057.
Fletcher S. 2000. US EPA proposes severe diesel sulfur limits. Oil Gas J. Online Story, may 17.
Greenpeace. 1998. The plastics boom and the looming PVC Waste Crisis. Amsterdam. The Netherlands. http://archive.greenpeace.org/comms/pvctoys/reports/loomingcontents.html
Kilbane J.J. 1992. Mutant microorganisms useful for cleavage of organic C-S bonds. US Patent 5,104,801.
Le Borgne S. & Quintero R. 2003. Biotechnological processes for the refining of petroleum: a general overview. Fuel Proc. Technol. 81:155-169.
Monticello D.J. & Finnerty W.R. 1985. Microbial desulfurization of fossil fuels. Annu. Rev. Microbiol. 39: 371-389.
Young D. 2001. European fuels meet 2005 specs; refiners look beyond. Oil Gas J. 99(47):Online.