2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Finding the traces of the HIV selection
Espinosa E
Language: Spanish
References: 60
Page: 84-90
PDF size: 101.96 Kb.
ABSTRACT
Recent evidences establish that the evolution of the Human Immunodeficiency Virus in the present epidemic has an adaptive component. The main selective pressure on HIV consists of cytotoxic T lymphocytes (CTLs) recognition of viral peptides on infected cells associated to class I HLA molecules. Since each HLA allele recognizes a defined repertoire of peptides, escape mutations will reflect the HLA alleles present in individuals or populations. Initial findings demonstrated the possibility of adaptive evolution in HIV, by showing the role of CTLs in infection control, the emergence of escape mutants, and their ability to be transmitted and accumulate. The subsequent finding of a population-level association between viral sequence polymorphisms and particular alleles in the hosts was considered a mark of CTL selection on HIV. Subsequent studies experimentally verified the immunological mechanisms of this selection and it is present occurrence. The strategies of these studies, based on the evaluation of immunological hypothesis suggested by statistical findings on virus and host polymorphisms, offer novel opportunities of research in topics as the interaction between immune and antiretroviral drug pressures, and the biological relevance of fitness of viral variants.
REFERENCES
Hu, D. J. et al. The emerging genetic diversity of HIV. The importance of global surveillance for diagnostics, research, and prevention. JAMA 275, 210-216 (1996).
Mansky, L. M. & Temin, H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087-5094 (1995).
Rambaut, A., Posada, D., Crandall, K. A. & Holmes, E. C. The causes and consequences of HIV evolution. Nat. Rev. Genet. 5, 52-61 (2004).
Ruibal, I., Diaz, H. M., de Armas, M. B. & Noa, E. On HIV genetic diversity in Cuba. AIDS 17, 2274-2275 (2003).
Thomson, M. M. et al. HIV-1 genetic diversity in Galicia Spain: BG intersubtype recombinant viruses circulating among injecting drug users. AIDS 15, 509-516 (2001).
Vergne, L. et al. Biological and genetic characteristics of HIV infections in Cameroon reveals dual group M and O infections and a correlation between SI-inducing phenotype of the predominant CRF02_AG variant and disease stage. Virology 310, 254-266 (2003).
Diaz, R. S., Sabino, E. C., Mayer, A., Mosley, J. W. & Busch, M. P. Dual human immunodeficiency virus type 1 infection and recombination in a dually exposed transfusion recipient. The Transfusion Safety Study Group. J. Virol. 69, 3273-3281 (1995).
Pernas, M., Casado, C., Fuentes, R., Perez-Elias, M. J. & Lopez-Galindez, C. A dual superinfection and recombination within HIV-1 subtype B 12 years after primoinfection. J. Acquir. Immune. Defic. Syndr. 42, 12-18 (2006).
Korber, B. et al. HIV-1 intrapatient sequence diversity in the immunogenic V3 region. AIDS Res. Hum. Retroviruses 8, 1461-1465 (1992).
Bello, G. et al. Co-existence of recent and ancestral nucleotide sequences in viral quasispecies of human immunodeficiency virus type 1 patients. J Gen Virol 85, 399-407 (2004).
Leitner, T. & Albert, J. The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proc Natl Acad Sci U S A 96, 10752-10757 (1999).
Bennett, D. HIV [corrected] genetic diversity surveillance in the United States. J. Infect. Dis. 192, 4-9 (2005).
Robbins, K. E. et al. U.S. Human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains. J Virol 77, 6359-6366 (2003).
Yang, C. et al. Genetic diversity and high proportion of intersubtype recombinants among HIV type 1-infected pregnant women in Kisumu, western Kenya. AIDS Res. Hum. Retroviruses 20, 565-574 (2004).
Gao, F. et al. An isolate of human immunodeficiency virus type 1 originally classified as subtype I represents a complex mosaic comprising three different group M subtypes (A, G, and I). J. Virol. 72, 10234-10241 (1998).
Sala, M. & Wain-Hobson, S. Are RNA viruses adapting or merely changing? J. Mol. Evol. 51, 12-20 (2000).
Kalams, S. A. & Walker, B. D. The cytotoxic T-lymphocyte response in HIV-1 infection. Clin. Lab Med. 14, 271-299 (1994).
Harrer, E. et al. HIV-1-specific cytotoxic T lymphocyte response in healthy, long-term nonprogressing seropositive persons. AIDS Res. Hum. Retroviruses 10 Suppl 2, S77-S78 (1994).
Price, D. A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. U. S. A 94, 1890-1895 (1997).
Zhang, W. H., Hockley, D. J., Nermut, M. V. & Jones, I. M. Functional consequences of mutations in HIV-1 Gag p55 selected by CTL pressure. Virology 203, 101-105 (1994).
Cao, J., McNevin, J., Malhotra, U. & McElrath, M. J. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol 171, 3837-3846 (2003).
Middleton, D. et al. Analysis of the distribution of HLA-A alleles in populations from five continents. Hum. Immunol. 61, 1048-1052 (2000).
Gorodezky, C., Teran, L. & Escobar-Gutierrez, A. HLA frequencies in a Mexican Mestizo population. Tissue Antigens 14, 347-352 (1979).
Goulder, P. J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334-338 (2001).
Leslie, A. J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10, 282-289 (2004).
Weber, J. et al. Role of Baseline pol Genotype in HIV-1 Fitness Evolution. J Acquir Immune Defic Syndr 33, 448-460 (2003).
Friedrich, T. C. et al. Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat Med 10, 275-281 (2004).
Moore, C. B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439-1443 (2002).
Edwards, C. T., Pfafferott, K. J., Goulder, P. J., Phillips, R. E. & Holmes, E. C. Intrapatient escape in the A*0201-restricted epitope SLYNTVATL drives evolution of human immunodeficiency virus type 1 at the population level. J. Virol. 79, 9363- 9366 (2005).
Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769- 775 (2004).
Leslie, A. et al. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J. Exp. Med. 201, 891-902 (2005).
Yang, W., Bielawski, J. P. & Yang, Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J. Mol. Evol. 57, 212-221 (2003).
Lemey, P., Van, D. S. & Vandamme, A. M. Evolutionary dynamics of human retroviruses investigated through full-genome scanning. Mol. Biol. Evol. 22, 942-951 (2005).
Lederman, M. M. Immune restoration and CD4+ T-cell function with antiretroviral therapies. AIDS 15 Suppl 2, S11-S15 (2001).
Torres, K. J. et al. CD8+ cell noncytotoxic anti-HIV response: restoration by HAART in the late stage of infection. AIDS Res. Hum. Retroviruses 22, 144-152 (2006).
Barbour, J. D. & Grant, R. M. The Clinical Implications of Reduced Viral Fitness. Curr. Infect. Dis. Rep. 6, 151-158 (2004).
Weinstock, H. et al. Prevalence of mutations associated with reduced antiretroviral drug susceptibility among human immunodeficiency virus type 1 seroconverters in the United States, 1993-1998. J. Infect. Dis. 182, 330-333 (2000).
Cane, P. et al. Time trends in primary resistance to HIV drugs in the United Kingdom: multicentre observational study. BMJ 331, 1368 (2005).
John, M., Moore, C. B., James, I. R. & Mallal, S. A. Interactive selective pressures of HLA-restricted immune responses and antiretroviral drugs on HIV-1. Antivir. Ther. 10, 551-555 (2005).
Karlsson, A. C. et al. Dual pressure from antiretroviral therapy and cell-mediated immune response on the human immunodeficiency virus type 1 protease gene. J Virol 77, 6743-6752 (2003).
Mason, R. D. & Grant, M. D. A therapy-related point mutation changes the HLA restriction of an HIV-1 Pol epitope from A2 to B57 and enhances its recognition. AIDS 19, 981-984 (2005).
Nolan, D., James, I. & Mallal, S. HIV/AIDS. HIV: experiencing the pressures of modern life. Science 307, 1422-1424 (2005).
Allen, T. M. et al. Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J. Virol. 79, 13239-13249 (2005).
Decker, J. M. et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med. 201, 1407- 1419 (2005).
Mujeeb, A., Kerwin, S. M., Egan, W., Kenyon, G. L. & James, T. L. A potential gene target in HIV-1: rationale, selection of a conserved sequence, and determination of NMR distance and torsion angle constraints. Biochemistry 31, 9325-9338 (1992).
Pique, C., Tursz, T. & Dokhelar, M. C. Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation? EMBO J. 9, 4243-4248 (1990).
Zur, M. J. et al. Novel evolutionary analyses of full-length HIV type 1 subtype C molecular clones from Cape Town, South Africa. AIDS Res. Hum. Retroviruses 18, 1327-1332 (2002).
Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307-312 (2003).
Amella, C. A., Sherry, B., Shepp, D. H. & Schmidtmayerova, H. Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP. J. Virol. 79, 5625-5631 (2005).
Koeppe, J. R., Campbell, T. B., Rapaport, E. L. & Wilson, C. C. HIV-1-specific CD4+ T-cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. J. Acquir. Immune. Defic. Syndr. 41, 140-148 (2006).
Kim, B., Hathaway, T. R. & Loeb, L. A. Human immunodeficiency virus reverse transcriptase. Functional mutants obtained by random mutagenesis coupled with genetic selection in Escherichia coli. J. Biol. Chem. 271, 4872-4878 (1996).
van der Burg, S. H. et al. Induction of a primary human cytotoxic T-lymphocyte response against a novel conserved epitope in a functional sequence of HIV-1 reverse transcriptase. AIDS 9, 121-127 (1995).
Geretti, A. M. The clinical significance of viral fitness. J. HIV. Ther. 10, 6-10 (2005).
Simon, V. et al. Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS. Pathog. 1, e6 (2005).
Reeves, J. D. & Piefer, A. J. Emerging drug targets for antiretroviral therapy. Drugs 65, 1747-1766 (2005).
Amberg, S. M., Netter, R. C., Simmons, G. & Bates, P. Expanded tropism and altered activation of a retroviral glycoprotein resistant to an entry inhibitor peptide. J. Virol. 80, 353-359 (2006).
Klinger, P. P. & Schubert, U. The ubiquitin-proteasome system in HIV replication: potential targets for antiretroviral therapy. Expert. Rev. Anti. Infect. Ther. 3, 61-79 (2005).
Sticht, J. et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat. Struct. Mol. Biol. 12, 671-677 (2005).
Zhu, C., Matthews, T. J. & Chen, C. H. Neutralization epitopes of the HIV-1 primary isolate DH012. Vaccine 21, 3301-3306 (2003).
Berthoux, L., Sebastian, S., Sokolskaja, E. & Luban, J. Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc. Natl. Acad. Sci. U. S. A 102, 14849-14853 (2005).