2024, Number 1
<< Back Next >>
Rev Mex Anest 2024; 47 (1)
Neuromonitoring with processed electroencephalogram, more than anesthetic depth
Martínez-de SCA, Ramírez-Sánchez IA, Guillén-Ramírez EO, Reyes-Gutiérrez A, Escudero-Gutiérrez FA, Cantú-Flores F
Language: Spanish
References: 35
Page: 39-45
PDF size: 342.24 Kb.
ABSTRACT
Intraoperative neuromonitoring with electroencephalogram (EEG) and processed electroencephalogram (pEEG) allows the evaluation of changes in brain electrical activity and unconsciousness generated by anesthetics, as well as preventing adverse events such as intraoperative recall, drug overdose, hemodynamic and/or neurological compromise, delirium and postoperative cognitive dysfunction. However, cortical electrical activity can be modulated and affected by pathophysiological alterations, independently of the effect of anesthetic drugs, both EEG and pEEG can be helpful in the timely diagnosis of metabolic, hypoxic, and suppression of electrical activity disorders brain, non-convulsive status epilepticus, intracranial hypertension, hypoperfusion or cerebral ischemia. Routine neuromonitoring with the available monitor is recommended in order to improve our experience in order to achieve a patient personalized and precise anesthesia level, arriving to an optimal dose for the maintenance of the mechanisms involved in the autoregulation of cerebral perfusion, understanding brain physiology, function as well as its interaction with drugs and hemodynamic impact to neurosurgical and non-neurosurgical patients, identifying early signs of possible complications derived from the procedure or due to pharmacological effect and their rapid resolution.
REFERENCES
Kaiser HA, Hight D, Avidan MS. A narrative review of electroencephalogram-based monitoring during cardiovascular surgery. Curr Opin Anaesthesiol. 2020;33:92-100. doi: 10.1097/ACO.0000000000000819.
Scheeren TWL, Kuizenga MH, Maurer H, et al. Electroencephalography and brain oxygenation monitoring in the perioperative period. Anesth Analg. 2019;128:265-277. doi: 10.1213/ANE.0000000000002812.
Chhabra A, Subramaniam R, Srivastava A, et al. Spectral entropy monitoring for adults and children undergoing general anaesthesia. Cochrane Database Syst Rev. 2016;3:CD010135. doi: 10.1002/14651858.CD010135.pub2.
Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110(12):E1142-E1151. doi: 10.1073/pnas.1221180110.
Constant I, Sabourdin N. Monitoring depth of anesthesia: from consciousness to nociception. A window on subcortical brain activity. Paediatr Anaesth. 2015;25:73-82. doi: 10.1111/pan.12586.
Shepherd J, Jones J, Frampton G, et al. Clinical effectiveness and cost-effectiveness of depth of anaesthesia monitoring: a systematic review and economic evaluation. Health Technol Assess. 2013;17:1-264. doi: 10.3310/hta17340.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part i: background and basic signatures. Anesthesiology. 2015;123:937-960. doi: 10.1097/ALN.0000000000000841.
NORMA Oficial Mexicana NOM-006-SSA3-2011, Para la práctica de la anestesiología. Disponible en: https://www.gob.mx/cms/uploads/attachment/file/512097/NOM-006-SSA3-2011.pdf
Bombardieri AM, Wildes TS, Stevens T, et al. Practical training of anesthesia clinicians in electroencephalogram-based determination of hypnotic depth of general anesthesia. Anesth Analg. 2020;130:777-786. doi: 10.1213/ANE.0000000000004537.
Kurata J. Anesthetic mechanisms revealed by functional brain imaging. Masui. 2011;60:566-573.
Akeju O, Loggia ML, Catana C, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. Elife. 2014;3:e04499. doi: 10.7554/eLife.04499.
Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111-117. doi: 10.1213/ANE.0000000000002331.
Montupil J, Defresne A, Bonhomme V. The raw and processed electroencephalogram as a monitoring and diagnostic tool. J Cardiothorac Vasc Anesth. 2019;33 Suppl 1:S3-S10. doi: 10.1053/j.jvca.2019.03.038.
Katyal N, Sarwal A, George P, et al. The relationship of triphasic waves with intracranial pressure as a possible prognostic marker in traumatic brain injury. Case Rep Neurol Med. 2017;2017:4742026. doi: 10.1155/2017/4742026.
Belletti A, Naorungroj T, Yanase F, et al. Normative values for SedLine-based processed electroencephalography parameters in awake volunteers: a prospective observational study. J Clin Monit Comput. 2021;35:1411-1419. doi: 10.1007/s10877-020-00618-4.
Gibbs FA, Gibbs LE, Lennox WG. Effects on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med. 1937;60:154-166.
Dahaba AA. Benefits and boundaries of pEEG monitors when they do not concur with standard anesthetic clinical monitoring: lights and shadows. Minerva Anestesiol. 2020;86:304-316. doi: 10.23736/S0375-9393.19.13959-4.
Isley MR, Edmonds HL Jr, Stecker M; American Society of Neurophysiological Monitoring. Guidelines for intraoperative neuromonitoring using raw and quantitative EEG: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2009;23:369-390. doi: 10.1007/s10877-009-9191-y.
Jildenstal P, Backstrom A, Hedman K, Warrén-Stomberg M. Spectral edge frequency during general anaesthesia: A narrative literature review. J Int Med Res. 2022;50:3000605221118682. doi: 10.1177/03000605221118682.
Fukuda S, Yasuda A, Lu Z, et al. Effect sites of anesthetics in the central nervous system network looking into mechanisms for natural sleep and anesthesia. Masui. 2011;60:544-558.
Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: theory and practice. Anesth Analg. 2018;127:1246-1258. doi: 10.1213/ANE.0000000000003668.
Li Y, Bohringer C, Liu H. Double standard: why electrocardiogram is standard care while electroencephalogram is not? Curr Opin Anaesthesiol. 2020;33:626-632. doi: 10.1097/ACO.0000000000000902.
Yli-Hankala A, Scheinin H. Is it possible to measure the depth of anesthesia using electroencephalogram? Duodecim. 2015;131:1929-1936.
Mihara K, Nakahara H, Iwashita K, Shigematsu K, Yamaura K, Akiyoshi K. Cerebral hemorrhagic infarction was diagnosed subsequently after high-amplitude slow waves detected on processed electroencephalogram during sedation: a case report. JA Clin Rep. 2021;7:79. doi: 10.1186/s40981-021-00483-3.
Punjasawadwong Y, Chau-In W, Laopaiboon M, et al. pEEG and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst Rev. 2018;5:CD011283. doi: 10.1002/14651858.CD011283.pub2.
MacKenzie KK, Britt-Spells AM, Sands LP, Leung JM. Processed electroencephalogram monitoring and postoperative delirium: a systematic review and meta-analysis. Anesthesiology. 2018;129:417-427. doi: 10.1097/ALN.0000000000002323.
Aldecoa C, Bettelli G, Bilotta F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017;34:192-214. doi: 10.1097/EJA.0000000000000594.
Wildes TS, Mickle AM, Ben Abdallah A, et al.; ENGAGES Research Group. Effect of EEG-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery. JAMA. 2019;321:473-483. doi: 10.1001/jama.2018.22005.
Chan MTV, Hedrick TL, Egan TD, et al; Perioperative Quality Initiative (POQI) 6 Workgroup. Joint consensus statement on the role of neuromonitoring in perioperative outcomes. Anesth Analg. 2020;130:1278-1291. doi: 10.1213/ANE.0000000000004502.
Sanz-García A, Pérez-Romero M, Pastor J, et al. Identifying causal relationships between EEG activity and intracranial pressure changes in neurocritical care patients. J Neural Eng. 2018;15:066029. doi: 10.1088/1741-2552/aadeea.
Canac N, Jalaleddini K, Thorpe SG, et al. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS. 2020;17:40. doi: 10.1186/s12987-020-00201-8.
Ajcevic M, Furlanis G, Miladinovic A, et al. Early EEG alterations correlate with CTP hypoperfused volumes and neurological deficit: a wireless EEG Study in hyper-acute ischemic stroke. Ann Biomed Eng. 2021;49:2150-2158. doi: 10.1007/s10439-021-02735-w.
Block L, El-Merhi A, Liljencrantz J, et al. Cerebral ischemia detection using artificial intelligence. Acta Anaesthesiol Scand. 2020;64:1335-1342. doi: 10.1111/aas.13657.
Caballero A, Benet P, Bobi J, Fontanals J, Magaldi M, Mérida E. Bispectral index in an experimental model of cardiac arrest: monitoring during cardiopulmonary resuscitation. Resuscitation. 2019. doi: 10.1016/j.resuscitation.2019.06.030.
Eveson L, Vizcaychipi M, Patil S. Role of bispectral index monitoring and burst suppression in prognostication following out-of-hospital cardiac arrest: a systematic review protocol. Syst Rev. 2017;6:191. doi: 10.1186/s13643-017-0584-6.