2023, Number 3
<< Back
Investigación en Discapacidad 2023; 9 (3)
Muscle and cancer: a bidirectional relationship. Pathophysiology and consequences
León-Reyes LI, Canto P, Coral-Vázquez RM
Language: Spanish
References: 74
Page: 136-146
PDF size: 264.38 Kb.
ABSTRACT
The muscle has very important interrelationships with other organs such as the heart, liver, brain and adipose tissue. Its wear, known as sarcopenia, has been associated with different types of cancer during treatment, which causes an increase in toxicity derived from both, chemotherapy and radiotherapy. This causes treatment delays and unwanted dose adjustments that negatively impact the survival of cancer patients. There is evidence that suggests that sarcopenia persists even in the survival stage, conditioning a negative impact on the quality of life of patients and on their work productivity. Different physiopathological mechanisms at the cellular and molecular level involved in sarcopenia in cancer are known, which increasingly show a bidirectional relationship, both positive and negative, between cancer and muscle.
REFERENCES
Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019; 10: 42. Available in: https://doi.org/10.3389/fphys.2019.00042
Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. J Cell Physiol. 2021; 236 (4): 2393-2412. Available in: https://doi.org/10.1002/jcp.30033
Peixoto da Silva S, Santos JMO, Costa ESMP, Gil da Costa RM, Medeiros R. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle. 2020; 11 (3): 619-635. Available in: https://doi.org/10.1002/jcsm.12528
Ryan AM, Power DG, Daly L, Cushen SJ, Ni Bhuachalla E, Prado CM. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc. 2016; 75 (2): 199-211. Available in: https://doi.org/10.1017/S002966511500419X
Ness KK, Hudson MM, Pui CH, Green DM, Krull KR, Huang TT et al. Neuromuscular impairments in adult survivors of childhood acute lymphoblastic leukemia: associations with physical performance and chemotherapy doses. Cancer. 2012; 118 (3): 828-838. Available in: https://doi.org/10.1002/cncr.26337
Khal J, Wyke SM, Russell ST, Hine AV, Tisdale MJ. Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia. Br J Cancer. 2005; 93 (7): 774-780. Available in: https://doi.org/10.1038/sj.bjc.6602780
White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S et al. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS One. 2011; 6 (9): e24650. https://doi.org/10.1371/journal.pone.0024650
Hartman A, Van den Bos C, Stijnen T, Pieters R. Decrease in peripheral muscle strength and ankle dorsiflexion as long-term side effects of treatment for childhood cancer. Pediatr Blood Cancer. 2008; 50 (4): 833-837. Available in: https://doi.org/10.1002/pbc.21325
Global Burden of Disease Cancer C, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022; 8 (3): 420-444.
Bauer J, Morley JE, Schols A, Ferrucci L, Cruz-Jentoft AJ, Dent E et al. Sarcopenia: a time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle. 2019; 10 (5): 956-961. Available in: https://doi.org/10.1002/jcsm.12483
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (4): 601. Available in: https://doi.org/10.1093/ageing/afz046
Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB. Sarcopenia Is Associated with Mortality in Adults: A Systematic Review and Meta-Analysis. Gerontology. 2022; 68 (4): 361-376. Available in: https://doi.org/10.1159/000517099
Ritz A, Lurz E, Berger M. Sarcopenia in children with solid organ tumors: an instrumental era. Cells. 2022; 11 (8): 1278. Available in: https://doi.org/10.3390/cells11081278
Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, Panton L. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle. 2014; 5 (3): 183-192. Available in: https://doi.org/10.1007/s13539-014-0146-x
Waters DL, Baumgartner RN. Sarcopenia and obesity. Clin Geriatr Med. 2011; 27 (3): 401-421. Available in: https://doi.org/10.1016/j.cger.2011.03.007
Villasenor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv. 2012; 6 (4): 398-406. Available in: https://doi.org/10.1007/s11764-012-0234-x
Williams AM, Krull KR, Howell CR, Banerjee P, Brinkman TM, Kaste SC et al. Physiologic frailty and neurocognitive decline among young-adult childhood cancer survivors: a prospective study from the St Jude Lifetime cohort. J Clin Oncol, 2021; 39 (31): 3485-3495. Available in: https://doi.org/10.1200/JCO.21.00194
Tomlinson D, Zupanec S, Jones H, O'Sullivan C, Hesser T, Sung L. The lived experience of fatigue in children and adolescents with cancer: a systematic review. Support Care Cancer. 2016; 24 (8): 3623-3631. Available in: https://doi.org/10.1007/s00520-016-3253-8
Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009; 15 (8): 2920-2926. Available in: https://doi.org/10.1158/1078-0432.CCR-08-2242
Cao A, Ferrucci LM, Caan BJ, Irwin ML. Effect of exercise on sarcopenia among cancer survivors: a systematic review. Cancers (Basel). 2022; 14 (3). Available in: https://doi.org/10.3390/cancers14030786
Prado CM, Cushen SJ, Orsso CE, Ryan AM. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. 2016; 75 (2): 188-198. Available in: https://doi.org/10.1017/S0029665115004279
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS et al. Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle. 2018; 9 (5): 987-1002. Available in: https://doi.org/10.1002/jcsm.12354
Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol. 2005; 37 (10): 2098-2114. Available in: https://doi.org/10.1016/j.biocel.2005.02.029
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221 (1): 3-12. Available in: https://doi.org/10.1002/path.2697
Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, Hatakeyama S et al. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci Rep. 2017; 7 (1): 2046. Available in: https://doi.org/10.1038/s41598-017-02088-2
Kraft CS, LeMoine CM, Lyons CN, Michaud D, Mueller CR, Moyes CD. Control of mitochondrial biogenesis during myogenesis. Am J Physiol Cell Physiol. 2006; 290 (4): C1119-1127. Available in: https://doi.org/10.1152/ajpcell.00463.2005
Mallard J, Hucteau E, Charles AL, Bender L, Baeza C, Pelissie M et al. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J Cachexia Sarcopenia Muscle. 2022; 13 (3): 1896-1907. Available in: https://doi.org/10.1002/jcsm.12991
Berg HE, Eiken O, Miklavcic L, Mekjavic IB. Hip, thigh and calf muscle atrophy and bone loss after 5-week bedrest inactivity. Eur J Appl Physiol. 2007; 99 (3): 283-289. Available in: https://doi.org/10.1007/s00421-006-0346-y
Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010; 91 (4): 1123S-1127S. Available in: https://doi.org/10.3945/ajcn.2010.28608A
Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A et al. IGF-1 is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol. 2006; 291 (3): R674-683. Available in: https://doi.org/10.1152/ajpregu.00104.2006
Dirks-Naylor AJ, Griffiths CL. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy. J Steroid Biochem Mol Biol. 2009; 117 (1-3): 1-7. Available in: https://doi.org/10.1016/j.jsbmb.2009.05.014
Sambasivan R, Tajbakhsh S. Adult skeletal muscle stem cells. Results Probl Cell Differ. 2015; 56: 191-213. Available in: https://doi.org/10.1007/978-3-662-44608-9_9
Michele DE. Mechanisms of skeletal muscle repair and regeneration in health and disease. FEBS J. 2022; 289 (21): 6460-6462. Available in: https://doi.org/10.1111/febs.16577
Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 2013; 14 (12): 1062-1072. Available in: https://doi.org/10.1038/embor.2013.182
Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010; 120 (1): 11-19. https://doi.org/10.1172/JCI40373
Kim J, Lee J. Role of transforming growth factor-beta in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil. 2017; 13 (6): 621-626. Available in: https://doi.org/10.12965/jer.1735072.536
Ballinger TJ, Thompson WR, Guise TA. The bone-muscle connection in breast cancer: implications and therapeutic strategies to preserve musculoskeletal health. Breast Cancer Res. 2022; 24 (1): 84. Available in: https://doi.org/10.1186/s13058-022-01576-2
Davis MP, Panikkar R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann Palliat Med. 2019; 8 (1): 86-101. Available in: https://doi.org/10.21037/apm.2018.08.02
Marques VA, Ferreira-Junior JB, Lemos TV, Moraes RF, Junior JRS, Alves RR et al. Effects of chemotherapy treatment on muscle strength, quality of life, fatigue, and anxiety in women with breast cancer. Int J Environ Res Public Health. 2020; 17 (19): 7289. Available in: https://doi.org/10.3390/ijerph17197289
Braun TP, Szumowski M, Levasseur PR, Grossberg AJ, Zhu X, Agarwal A et al. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One. 2014; 9 (9): e106489. Available in: https://doi.org/10.1371/journal.pone.0106489
Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC. Chemotherapy-induced muscle wasting: association with NF-kappaB and cancer cachexia. Eur J Transl Myol. 2018; 28 (2): 7590. Available in: https://doi.org/10.4081/ejtm.2018.7590
Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget, 2016; 7 (28): 43442-43460. Available in: https://doi.org/10.18632/oncotarget.9779
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-beta Signalling Network in Muscle Development, Adaptation and Disease. Adv Exp Med Biol. 2016; 900: 97-131. https://doi.org/10.1007/978-3-319-27511-6_5
Yu Y, Feng XH. TGF-beta signaling in cell fate control and cancer. Curr Opin Cell Biol. 2019; 61: 56-63. Available in: https://doi.org/10.1016/j.ceb.2019.07.007
Huang L, Li W, Lu Y, Ju Q, Ouyang M. Iron metabolism in colorectal cancer. Front Oncol. 2023; 13: 1098501. Available in: https://doi.org/10.3389/fonc.2023.1098501
Okazaki Y, Hino K. Iron and cancer: a special issue. Cancers (Basel). 2023; 15 (7): Available in: https://doi.org/10.3390/cancers15072097
Wyart E, Hsu MY, Sartori R, Mina E, Rausch V, Pierobon ES et al. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Rep. 2022; 23 (4): e53746. Available in: https://doi.org/10.15252/embr.202153746
Arpke RW, Shams AS, Collins BC, Larson AA, Lu N, Lowe DA et al. Preservation of satellite cell number and regenerative potential with age reveals locomotory muscle bias. Skelet Muscle. 2021; 11 (1): 22. Available in: https://doi.org/10.1186/s13395-021-00277-2
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle. 2022; 12 (1): 17. Available in: https://doi.org/10.1186/s13395-022-00300-0
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015; 5 (3): 1027-1059. Available in: https://doi.org/10.1002/cphy.c140068
Zeng X, Xie L, Ge Y, Zhou Y, Wang H, Chen Y, et al. Satellite cells are activated in a rat model of radiation-induced muscle fibrosis. Radiat Res. 2022; 197 (6): 638-649. Available in: https://doi.org/10.1667/RADE-21-00183.1
Caiozzo VJ, Giedzinski E, Baker M, Suarez T, Izadi A, Lan M, et al. The radiosensitivity of satellite cells: cell cycle regulation, apoptosis and oxidative stress. Radiat Res. 2010; 174 (5): 582-589. Available in: https://doi.org/10.1667/RR2190.1
Paulino AC, Wen BC, Brown CK, Tannous R, Mayr NA, Zhen WK et al. Late effects in children treated with radiation therapy for Wilms' tumor. Int J Radiat Oncol Biol Phys. 2000; 46 (5): 1239-1246. Available in: https://doi.org/10.1016/s0360-3016(99)00534-9
D'Souza D, Roubos S, Larkin J, Lloyd J, Emmons R, Chen H et al. The late effects of radiation therapy on skeletal muscle morphology and progenitor cell content are influenced by diet-induced obesity and exercise training in male mice. Sci Rep. 2019; 9 (1): 6691. Available in: https://doi.org/10.1038/s41598-019-43204-8
Jung HW, Kim JW, Kim JY, Kim SW, Yang HK, Lee JW et al. Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Support Care Cancer. 2015; 23 (3): 687-694. Available in: https://doi.org/10.1007/s00520-014-2418-6
Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008; 197 (1): 1-10. Available in: https://doi.org/10.1677/JOE-07-0606
Chapman MA, Meza R, Lieber RL. Skeletal muscle fibroblasts in health and disease. Differentiation. 2016; 92 (3): 108-115. Available in: https://doi.org/10.1016/j.diff.2016.05.007
Case AA, Kullgren J, Anwar S, Pedraza S, Davis MP. Treating chronic pain with buprenorphine-the practical guide. Curr Treat Options Oncol. 2021; 22 (12): 116. Available in: https://doi-org.pbidi.unam.mx:2443/10.1007/s11864-021-00910-8
Lin T, Dai M, Xu P, Sun L, Shu X, Xia X et al. Prevalence of sarcopenia in pain patients and correlation between the two conditions: a systematic review and meta-analysis. J Am Med Dir Assoc. 2022; 23 (5): 902.e1-902.e20. Available in: https://doi-org.pbidi.unam.mx:2443/10.1016/j.jamda.2022.02.005
Mucke M, Weier M, Carter C, Copeland J, Degenhardt L, Cuhls H et al. Systematic review and meta-analysis of cannabinoids in palliative medicine. J Cachexia Sarcopenia Muscle. 2018; 9 (2): 220-234. Available in: https://doi-org.pbidi.unam.mx:2443/10.1002/jcsm.12273
Schouten M, Dalle S, Koppo K. Molecular Mechanisms Through Which Cannabidiol May Affect Skeletal Muscle Metabolism, Inflammation, Tissue Regeneration, and Anabolism: A Narrative Review. Cannabis Cannabinoid Res. 2022; 7(6): 745-757.
Overholser LS, Callaway C. Preventive health in cancer survivors: what should we be recommending? J Natl Compr Canc Netw. 2018; 16 (10): 1251-1258. Available in: https://doi.org/10.6004/jnccn.2018.7083
Pérez CDA, Allende PSR, Verastegui AE, Rivera FMM, Meneses GA, Herrera GA et al. Assessment and impact of phase angle and sarcopenia in palliative cancer patients. Nutr Cancer. 2017; 69 (8): 1227-1233. Available in: https://doi-org.pbidi.unam.mx:2443/10.1080/01635581.2017.1367939
Ruiz-Casado A, Alvarez-Bustos A, de Pedro CG, Mendez-Otero M, Romero-Elias M. Cancer-related fatigue in breast cancer survivors: a review. Clin Breast Cancer. 2021; 21 (1): 10-25. Available in: https://doi.org/10.1016/j.clbc.2020.07.011
Van Deuren S, Boonstra A, Van Dulmen-den Broeder E, Blijlevens N, Knoop H, Loonen J. Severe fatigue after treatment for childhood cancer. Cochrane Database Syst Rev. 2020; 3: CD012681. Available in: https://doi.org/10.1002/14651858.CD012681.pub2
Lee SJ, Park YJ, Cartmell KB. Sarcopenia in cancer survivors is associated with increased cardiovascular disease risk. Support Care Cancer. 2018; 26 (7): 2313-2321. Available in: https://doi.org/10.1007/s00520-018-4083-7
Goodenough CG, Partin RE, Ness KK. Skeletal muscle and childhood cancer: where are we now and where we go from here. Aging Cancer. 2021; 2 (1-2): 13-35. Available in: https://doi.org/10.1002/aac2.12027
Hockenberry-Eaton M, Hinds PS. Fatigue in children and adolescents with cancer: evolution of a program of study. Semin Oncol Nurs. 2000; 16 (4): 261-272; discussion 272-268. Available in: https://doi.org/10.1053/sonu.2000.16577
Van Dijk-Lokkart EM, Steur LMH, Braam KI, Veening MA, Huisman J, Takken T et al. Longitudinal development of cancer-related fatigue and physical activity in childhood cancer patients. Pediatr Blood Cancer. 2019; 66 (12): e27949. Available in: https://doi.org/10.1002/pbc.27949
Paulino AC. Late effects of radiotherapy for pediatric extremity sarcomas. Int J Radiat Oncol Biol Phys. 2004; 60 (1): 265-274. Available in: https://doi.org/10.1016/j.ijrobp.2004.02.001
Stokes CL, Stokes WA, Kalapurakal JA, Paulino AC, Cost NG, Cost CR et al. Timing of radiation therapy in pediatric Wilms tumor: a report from the national cancer database. Int J Radiat Oncol Biol Phys. 2018; 101 (2): 453-461. Available in: https://doi.org/10.1016/j.ijrobp.2018.01.110
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM et al. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta. 2015; 1852 (5): 816-825. Available in: https://doi.org/10.1016/j.bbadis.2014.12.015
Hetzler KL, Hardee JP, LaVoie HA, Murphy EA, Carson JA. Ovarian function's role during cancer cachexia progression in the female mouse. Am J Physiol Endocrinol Metab. 2017; 312 (5): E447-E459. Available in: https://doi.org/10.1152/ajpendo.00294.2016
Wang X, Pickrell AM, Zimmers TA, Moraes CT. Increase in muscle mitochondrial biogenesis does not prevent muscle loss but increased tumor size in a mouse model of acute cancer-induced cachexia. PLoS One. 2012; 7 (3): e33426. Available in: https://doi.org/10.1371/journal.pone.0033426