2022, Number 1
Next >>
Biotecnol Apl 2022; 39 (1)
Naphthalene exposure decreases reduced glutathione in male Wistar rats
Olaoye I, Awotula A, Oso B, Agboola O, Akhigbe G, Olaoye T
Language: English
References: 48
Page: 1201-1210
PDF size: 2507.48 Kb.
ABSTRACT
The study assessed the probable effects of naphthalene exposure through in vivo and in silico approaches. The in vivo assessment was carried on the glutathione (GSH) level in twenty-four Wistar Rats in two main groups based on different exposure times (2 and 4 h). These two groups were sub-grouped into three groups of four rats per group for 14 days. The in silico study was done on naphthalene and its metabolite towards glutamate-cysteine ligase (GCL) (the regulatory enzyme in GSH synthetic pathway) and glutathione reductase (GR). The result revealed that for 2 h of naphthalene exposure, the lower dose (0.75 g/m3) showed the highest reduced GSH level (93.50 ± 4.33 μmol/L) while the higher dose (1.50 g/m3) showed the least reduced GSH level (59.25 ± 7.57 μmol/L). In almost similar pattern, the 4 h exposure of naphthalene at both doses depicted a significant reduction compared to the control. The molecular docking study substantiated with the dynamics study revealed that naphthalene and all its metabolites had better binding score than glutathione (4.63 ± 0.15 kcal/mol) towards GCL with a common interacting residues (Leu-62, Val-63, Arg-64 and Phe-96). However, 4-hydroxychalcone had the best binding score (7.43 ± 0.58 kcal/mol) towards GR compared naphthalene and its metabolites. This study suggested that all naphthalene metabolites could possess more inhibitory potency than naphthalene towards GCL (except naphthalene epoxide) and GR.
REFERENCES
EPA. Chemicals and Toxics. 2021(cited Jan 20, 2021). Available from: https://www.epa.gov/environmental-topics/chemicals-and-toxics-topics.
Veskoukis AS, Tsatsakis AM, Kouretas D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress and Chaperones. 2012;17:11-21.
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37-56
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
Sabale V, Kunjwani H, Sabale P. Formulationand in vitro evaluation of thetopical antiageing preparation of the fruitof Benincasa hispida. J Ayurveda IntegrMed. 2011;2(3):124-8.
Slezakova K, Pires JCM, Castro D, Alvim-Ferraz MDCM, Delerue-Matos C, MoraisS, et al. PAH air pollution at a Portugueseurban area: Carcinogenic risks and sourcesidentification. Environ Sci Pollut Res.2013;20:3932-45.
Nakata H, Uehara K, Goto Y, FukumuraM, Shimasaki H, Takikawa K. Polycyclicaromatic hydrocarbons in oysters andsediments from the Yatsushiro Sea, Japan:Comparison of potential risks amongPAHs, dioxins and dioxin-like compoundsin benthic organisms. Ecotoxicol EnvironSaf. 2014;99:61-8.
Honda M, Suzuki N. Toxicities of PolycyclicAromatic Hydrocarbons for AquaticAnimals Int. J. Environ. Res. Public Health.2020;17:1363.
Devi NL, Yadav IC, Shihua Q, Dan Y,Zhang G, Raha P. Environmental carcinogenicpolycyclic aromatic hydrocarbons insoil from Himalayas, India: Implicationsfor spatial distribution, sources apportionmentand risk assessment. Chemosphere.2016;144:493-502.
Kuppusamy S, Thavamani P, MegharajM, Naidu R. Biodegradation of polycyclicaromatic hydrocarbons (PAHs) bynovel bacterial consortia tolerant to diversephysical settings - Assessments in liquidandslurry-phase systems. Int Biodeter andBiodegradation. 2016;108:149-57.
Li PH, Wang Y, Li YH, Wai KM, Li HL,Tong L. Gas-particle partitioning and precipitationscavenging of polycyclic aromatichydrocarbons (PAHs) in the free tropospherein southern China. AtmosphericEnviron. 2016;128:165-74.
Parales RE, Ju KS. Rieske-type dioxygenases:Key enzymes in the degradationof aromatic hydrocarbons. In: MurrayMoo-Young, Comprehensive Biotechnology(Second Edition). New York: AcademicPress; 2016. p. 115-34.
Baldwin RM, Jewell WT, Fanucchi MV,Plopper CG, Buckpitt AR. Comparison ofpulmonary/nasal CYP2F expression levelsin rodents and rhesus macaque. J PharmacolExp Ther. 2004;309:127-36.
Kushwah DS, Salman MT, Singh P,Verma VK, Ahmad A. Protective effects of14.nolic extract of Nigella sativa seed inparacetamol induced acute hepatotoxicityin vivo. Pak J Biol Sci. 2014;17(4):517-22.
Carratt S, Morin D, Buckpitt AR,Edwards PC, Vas Winkle LS. Naphthalenecytotoxicity in microsomal epoxidehydrolase deficient mice. Toxicology Lett.2016;246:35-41.
Halliwell B, Gutteridge JMC. Freeradicals in biology and medicine, 4th edn.Oxford: Clarendon; 2007.
Sies H. Antioxidants in Disease, Mechanismsand Therapy. New York: AcademicPress; 1996.
Nie G, Cao Y, Zhao B. Protective effectsof green tea polyphenols and their majorcomponent, (–)-epigallocatechin-3- gallate(EGCG), on 6-hydroxydopamine-inducedapoptosis in PC12 cells. Redox Report.2002;7:171-7.
Sedlak J, Lindsay RH. Estimation of total,protein-bound, and non-protein sulfhydrylgroups in tissues with Ellman’s reagent.Anal Biochem. 1958;25(1):192-205.
Trott O, Olson AJ. AutoDock Vina:Improving the speed and accuracy of dockingwith a new scoring function, efficientoptimization and multithreading. J CompChem. 2010;31(2):455-61.
Kim S, Chen J, Cheng T, Gindulyte A,He J, He S, et al. PubChem 2019 update:improved access to chemical data. NucleicAcids Res. 2019;47(D1):D1102-9.
The UniProt Consortium. UniProt: theuniversal protein knowledgebase in 2021.Nucleic Acids Res. 2021;49(D1): D480-9.
Combet C, Blanchet C, GeourjonC, Deléage G. NPS@: network proteinsequence analysis. Trends Biochem Sci.2000;25(3):147-50.
Waterhouse A, Bertoni M, Bienert S,Studer G, Tauriello G, Gumienny R, et al.SWISS-MODEL: homology modelling ofprotein structures and complexes. NucleicAcids Res. 2018;46(W1):W296-303.
Lee GR, Won J, Heo L, Seok C.GalaxyRefine2: simultaneous refinementof inaccurate local regions and overallprotein structure, Nucleic Acids Res.2019;47(W1):W451-5.
Laskowski RA, MacArthur MW, MossDS, Thornton JM. PROCHECK: a programto check the stereochemical qualityof protein structures. J. Appl Crystal.1993;26(2):283-91.
Laskowski RA, Rullmannn JA, MacArthurMW, Kaptein R, Thornton JM. AQUAand PROCHECK-NMR: programs for checkingthe quality of protein structures solvedby NMR. J Biomol NMR. 1996;8(4):477-86.
Benkert P, Biasini M, Schwede T. Towardthe estimation of the absolute quality ofindividual protein structure models. Bioinformatics.2011;27(3):343-50.
Roy A, Yang J, Zhang Y. COFACTOR:an accurate comparative algorithm forstructure-based protein function annotation.Nucleic Acids Res. 2012;40(W1):W471-7.
Berman HM, Westbrook J, Feng Z,Gilliland G, Bhat TN, Weissig H, et al.The Protein Data Bank. Nucleic Acids Res.2000;28(1):235-42.
Kuriata A, Gierut AM, Oleniecki T, CiemnyMP, Kolinski A, Kurcinski M, et al. CABSflex2.0: a web server for fast simulations offlexibility of protein structures. Nucleic AcidsRes. 2018;46(W1):W338-43.
Parkinson A, Ogilvie BW. Biotransformationof xenobiotics. In: Klaassen CD (Ed.).Casarett & Doull’s Toxicology the BasicScience of Poisons. 7th ed. New York: TheMcGraw Hill Companies, Inc.; 2008. p.161-304.
Buckpitt, A, Boland B, Isbell M, MorinD, Shultz M, Baldwin R, et al. Naphthaleneinducedrespiratory tract toxicity: Metabolicmechanisms of toxicity. Drug Metab Rev.2002; 34:791-820.
Greene JF, Zheng J, Grant DF, HammockBD. Cytotoxicity of 1,2-epoxynaphthaleneis correlated with protein binding and insitu glutathione depletion in cyto- chromeP4501A1 expressing Sf-21 cells. Toxicol Sci.2000;53:352-60.
West JA, Buckpitt AR, Plopper CG. Elevatedairway GSH resynthesis confers protectionto Clara cells from naphthalene injury in micemade tolerant by repeated exposures. EnvironHealth Perspect. 2000;118:647-52.
Plopper CG, Van Winkle LS, Fanucchi MV,Malburg SR, Nishio SJ, Chang A, et al. Earlyevents in naphthalene-induced acute Claracell toxicity. II. Comparison of glutathione depletionand histopathology by airway location.Am J Respir Cell Mol Biol. 2001;24:272-81.
Jones DP, Carlson JL, Mody VC, Cai J,Lynn MJ, Sternberg P. Redox state of glutathionein human plasma. Free Radic Biol Med.2000;28(4):625-35.
Phimister AJ, Lee MG, Morin D, BuckpittAR, Plopper CG. Glutathione depletion isa major determinant of inhaled naphthalenerespiratory toxicity and naphthalenemetabolism in mice. Toxicol Sci. 2004;82:268-78.
Stohs SJ, Ohia S, Bagchi D. Naphthalenetoxicity and antioxidant nutrients. Toxicology.2002;180:97-105.
Vijayavel K, Anbuselvam C, BalasubramanianMP. Antioxidant effect of the marinealgae Chlorella vulgaris against naphthaleneinducedoxidative stress in the albino rats. MolCell Biochem. 2007;303:39-44.
Seelig GF, Simondsen RP, Meister A.Reversible dissociation of γ-glutamylcysteinesynthetase into two subunits. J Biol Chem.1984;259(15):9345-7.
Brylinski M. Aromatic interactions at theligand-protein interface: Implications for thedevelopment of docking scoring functions.Chem Biol Drug Des. 2018;91(2):380-90.
Arthur DE, Uzairu A. Molecular dockingstudies on the interaction of NCI anticanceranalogues with human Phosphatidylinositol4,5-bisphosphate 3-kinase catalyticsubunit. J King Saud University – Science.2019;31:1151-66.
Elokely KM, Doerksen RJ. Dockingchallenge: protein sampling and moleculardocking performance. J Chem Inf Model.2013;53(8):1934-45.
Chen D, Oezguen N, Urvil P, FergusonC, Savidge TC. Regulation of protein-ligandbinding affinity by hydrogen bond pairing.Sci Adv. 2016;2(3):1-17.
Olaoye I, Oso B, Aberuagba A. Molecularmechanisms of anti-inflammatory activitiesof the extracts of Ocimum gratissimum andThymus vulgaris. Avicenna J Med Biotechnol.2021;13(4):207-16.
Dhorajiwala TM, Halder ST, Samant L.Comparative in silico molecular dockinganalysis of L-Threonine-3-Dehydrogenase,a protein target against African trypanosomiasisusing selected phytochemicals. J ApplBiotechnol Rep. 2019;6(3):101-8.
Zhang K, Yang EB, Tang WY, Wong KP,Mack P. Inhibition of glutathione reductaseby plant polyphenols. Biochem Pharmacol.1999;54(9):1047-53.