2021, Number 1
<< Back Next >>
Revista Cubana de Ortopedia y Traumatología 2021; 35 (1)
Historical evolution of long bone osteosynthesis I: Fixation with plate and screws
Ceballos MA, Tabares NH, Balmaseda MR, Álvarez BO, Rivero HJ
Language: Spanish
References: 85
Page: 1-42
PDF size: 617.32 Kb.
ABSTRACT
Introduction:
Man has acted on bone fractures of the limbs since ancient times, confirming immobilization (reduction-stability) as the basic way of treating the condition, which is presented with the triad of trauma, pain and functional impotence.
Objective:
The objective of this paper was to organize the presentation of the changes occurred with technological innovations, integrated in the treatment of fractures.
Methods:
A literature review on fractures is presented here. Articles published in journals indexed by CITMA, books by well-known authors, personal notes of events and surgical activities were reviewed, in order to analyze the selected variables and their historical links with the different stages that marked the new conceptions and modifications, arisen in the use of this type of osteosynthesis we call generations. Variables selected for analysis were fracture reduction, access route for plate placement, surgical procedure, new implant designs, instrumentation, implant metallurgy, and healing consolidation. Constitutive elements of the osteosynthesis surgical procedure.
By relating the results obtained and the dates of their implementation, with historical moments and the inclusion of relevant technological innovations, we come to recognize three stages or "generations" and their influence explains the advances in the current conceptions of this approach. First generation: classic, early 20th century. Second generation: compression, post-World War II. Third generation: current, functional, and biological.
Conclusions:
By relating the results obtained and the dates of their implementation, with historical moments and the inclusion of relevant technological innovations, we come to recognize three stages or "generations" whose influence explains the advances in the current conceptions of this procedure. First generation or classic: at the beginning of the 20th century. Second generation: compression, post-World War II. Third generation: current, functional and biological.
REFERENCES
Soler R, Mederos O, Ceballos A. Lesiones graves por traumatismos. En: Mederos O. Cirugía. La Habana: Editorial Ciencias Médicas; 2018. p. 340-9.
Lambotte A. Sur l´osteosynthese. Belg. Med. 1908:231-3.
Lambotte A. Le treatment des fractures. Paris: Edit. Masson; 1907.
Lane W.A. The operative treatment of fractures. Londres: London Medical Publishing Co; 1914.
Bhandari M, Guyat GH, Suronikowski ME. Users guide to the orthopedic literature. I: How to use an article about a surgical therapy. J Bone J Surg. 2001;83A:916-26.
Bhandari M, Guyat GH, Mortori V, Devereaux P. User´s guide to the Orthopedic literature. III: How to use a systematic literature. Review. J Bone Joint Surg 2002;84A:1672-82.
Montori VM, Swiontkowski MF, Cook D.J. Methodologies issues in systematic review and Meta-Analysis.Clin.Orthop. 2003;413:43-54.
Campbell. Cirugía Ortopédica X Edic. Chapters 53, 54 Campbell Clinic Memphis Tennessee: Ed Marban; 2009. p. 1127-47.
Lambotte A. Technique of indications des prostheses dans le treatment des fractures. Press Med 1909;17:321.
Lambotte A. Chirurgieopératoire des fractures. Paris: Masson; 1913.
Sherman WO. Vanadium steel bone plates and screws. Surg. Gynecol Obstet. 1912;14:629-34.
Hey Grooves E, Modern methods of treating fractures. New York: Bristol John Wright and Sons; 1916.
Smith Petersen MN, Cove E. Vangander C. Intracapsular fracture of the neck of the femur. Treatment by internal fixation. Arch. Surg. 1931;23:715-59
Knowles F. Fractures of the neck of the femur. Winscon. Med. J. 1936;35:106.
Inclán A. The use of preserved bone graft in orthopedic surgery. J. Bone Joint Surg.1942;24:81-88
Venable CS. Osteosynthesis in the presence of metals: studies on electrolysis. South. Med. J. 1938;31:501.
Venable CS The effect on bone of the presence of metals, based upon electrolysis; an experimental study. Ann. Surg. 1937;105:917.
Zucman J. L´elaboration du caldans les fractures diaphysaires. Rev Chir.Ortho. 1966;52:109.
Perren SM. Evolution of internal fixation of long bone fractures. J. Bone Joint Surg. 2002;84B:1093-110.
Müller WE, Allgöwer M, Willenggen H. Compression fixation with plates. In: Technique of internal fixation of fractures. Berlin: Springer; 1965.
Müller M.E. Bases experimental et principles de l´osteosynthesis par compression. Int. Orth. (SICOT). 1978;2(2):115.
Múller ME, Allgöwer M, Schneider R. Manual of internal fixation. 2ed. New York: Spring Verlag; 1979.
Müller ME, Allgöwer R, Schneider H, Willengger H. Manual de osteosíntesis. Técnica AO. Habana: Ed. Revolucionaria. Ed. Científico Técnica; 1988.
Perren SM, Allogöwer M, Matter P. Biomechanic of fractures healing after internal fixation. Surg. Ann. 1975:361-90.
Augat H, Ruden Ch. Evolution of fractures treated with bone plates. Injury Journ. 2018;4951:52-59.
Shatzker J, Horne G. The effect of compression of cortical bones by screw threads, and the effect of movement of screws in bone. Clin.Orth. Relate Res. 1975;39:65-78.
Henry Ak. Exposure of long bonesand other surgical methods Bristol England. John Wrigt and Sons; 1927.
Allgöwer M, Kinzi L, Matter P. Placa de compresión dinámica (PCD). Barcelona, España: Ed. Científico Médica; 1970.
Ceballos A, Balmaseda R. Fijación Externa y Técnicas Afines. La Habana: ECIMED; 2016.
Donald A, Wiss M. Fractures: Master Technique in Orthopaedic Surgery 2ed. Lippincott: Williams and Wilkins; 2016.
Pauwells F. Der Schenketholsbruch, einmechanincher problem. Stugart: Enke; 1935.
Davis R. Theorie et practique de L´osteosynthese. Paris: Masson; 1949.
Shatzker J. Compression in the surgical treatment of fractures of the tibia. Clin. Orth. 1974;39(109):6.
Badgby GW, Janes JM. The effect of compression on the rate of fracture healing using an special plate Am. J. Surg. 1958;95:761.
Chows P. Introduction to the point contact fixator. Part II, Injury 2001;322:SB1-SB2.
Egger G, Shundler T, Pimerat CM. The influence of the contact-compression factor in osteogenesis in surgical fractures. J. Bone Joint Surg. 1949;1ª:210.
Orozco R, Sales JM. Atlas de Osteosíntesis. Barcelona: Ed. Masson; 2000.
Malhus N, Kumar M. Single locking compression plate fixation in extra-articular distal humeral fracture Orthop. Traumato. USA: Edited Sharlton Pierce; 2016.
Bavonratanavech S. Minimally Invasive Plate Osteosynthesis (MIPO). 2006- [acceso: 18 de mayo de 2020]. Disponible en: https://www.librarything.com/work/11974166/summary
Naik M, Arora G, Tupathy S. Clinical and radiological outcome of percutaneous plating in extra-articular proximal tibia fractures, a prospective study. Injury. 2013:44B:1081.
Mast Jacob R, Ganz R. Planning and reduction technique in fracture surgery. Berlin: Springer-Verlag; 1989.
Ballester J, Sueiro J. Editores: Biomateriales y sustitutos óseos en Traumatología y Cirugía Ortopédica Cádiz. España: Universidad de Cádiz, Servicio de Publicaciones; 2011.
Uhthoff H, Bardos D. The Advantages of Titanium alloy over stainless steel plates for the internal fixation of fractures, an experimental study in dogs. J Bone Joint Surg. 1981;63B:427.
Rahns BA. Perren JM. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg. 1971;53A:783-6.
Borrelli J, Prichett W, Song E. Extraosseous blood supply the effects of different plating techniques a human cadaveric study. J Orth.Traum. 2002;16(10):671-93.
Claudi B, Ordekoven G. Biological osteosynthesis. Chirug. 1991;62:367-77.
Perren SM. Evolution of the internal fixation of long bone fractures J. Bone Joint Surg. 2002;84B(8):1092-1109.
Archdeacom M, Wyrick J. Reduction plating for provisional fracture fixation J. Orthop. Traum. 2006;20(3):206.
Collenge AJ. Percutaneous plating in the lower extremities J. Am. Acad. Orth. Surg. 2000;8:24.
Kottmerer S, Row E, Tornetta P, Jerres C. Surgical Exposures trends and controversial in extremity fractures care. AAOS Instr. Course Lect. 2016;65:3-24.
Uhthoff H, Poitrar Ph, Backman D. Internal plate fixation of fractures: short history and recent development. J. Orth.Sci. 2006;11:118-26.
Marti A, Frunkhauser C, Frenck A. Biomechanical evaluation of the less invasive stabilization System, for the internal fixation of distal femoral fractures. J. Orthop.Traum. 2001;15:182-87.
Cole P, Zlowodzki M, Kreger PJ. Treatment of proximal tibia fractures using the less invasive stabilization treatment. Surgical experience and early clinical results. J. Orthop. Trauma 2004;18(8):528-31.
Tejwani N, Walinsky P. The changing fase of Orthopedic Trauma, locked plating and minimally invasive techniques. Symposium I AAOS Instr. Course Lect. 2008;57:3-5.
Südkamp N, Niemeyer P. Principles and clinical application of the locking compression plate (LCP). Acta Chir. Ortho. Trauma 2006;73:227.
Hak D, Althausen P. Locked plate fixation of osteoporotic humeral shaft fractures and two locking screw per segment enough. J. Orthop. Trauma 2007;24:207.
Smith WR, Ziran BH. Locking plate tips and tricks J. Bone Joint Surg. 2007;89A:2298.
Cantu RV, Kowd KJ. The use of locking plate in factures care. J Am Acad Ortho Surg. 2006;14:183-90.
Korner J, Diederich G, Arzdork M. A Biomechanical evaluation of methods of distal humeral fractures fixation, using locking compression plates vs. conventional reconstruction plates. Jou. Orthop. Trauma 2004;18:286-93.
Haidickowyah G, Sems SA, Hubner D. Horwithz D, Levy B. Results of the polyaxial locked-plate fixation of periarticular fractures of the knee. J. Bone Joint Surg. 2007;89A:614-20.
Egol K, Kubrak EN. Biomechanics of locked plates and screws. J. Orthop Trauma. 2004;18:448-9.
Subasi O, Oral A. A novel adjustable locking plate for segmental bone fracture treatment. Injury. 2019; 50(10):1614-9.
Quin X, Ling Xey, Wany Z. What is the most reliable classification system to assestibial fracture for plate fixation Jou. Fract. Ankle Surg. 2020;59(1):48-52.
1. Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury [Internet]. 1995;26:B5-10. Available from: https://www.sciencedirect.com/science/article/pii/0020138395968928
Shuntz M, Sudkamp P. Revolution in plate osteosynthesis: new internal fixation system Jou. Orthopedic System. 2003;8:252-8.
Kumar M, Ravishankar M. Single lockig plate fixation of extra-articular distal humeral fracture. En: Orthop. Traum. Callisto Refence; 2016. p. 1-7.
Solar J. Osteosíntesis con placa bloqueada; técnica mínima invasiva para fracturas de humero proximal. Acta Ortopédica Mexicana. 2017;31(11):16-21.
Bores A, Demeses Z. Minimally invasive medial plate osteosynthesis in total tibial pilon fracture: functional and radiological outcomes. Act. Orthop.Trauma. 2020;54(1):20-6.
Lac T, Flerming J. Minimally invasive plate Osteosynthesis for distal tibial fractures Clin. Pediat. Med. Surg. 2018;2:223-32.
Mazón R, Garces F. Principios bio-mecanicos para la Osteosíntesis, re-evaluación. Acta Ortopédica Mexicana. 2016;30(st):S1.
Blas Dobon. Qué hay de nuevo en la Osteosíntesis Rev. Española de Cirugía Ortopédica .2015;50(26):48.
Catalogo Synthes AO/ASIF. Placa Locking Compression Plate (LCP) para Fracturas y Osteotomías del Extremo Superior del Fémur. Synthes Gmbh. 2005;23:2-16.
Wininger F, Jurkowick J. Unstable distal radius fracture in the elderly patients: Volar fixed angular plate .Osteosynthesis, prevent secondary loss of reduction. Journal of Trauma. 2010;68(4):992-8.
Aroza R, Lutz M, Espin D. Complications following internal fixation of unstable distal radial fracture, with a palmar locking plate. J. Ortho. Trauma. 2007;21:31.
Gazi Huri. Adjustable bone plate: State of art. Turkish Journal of Medical Service. 2020;50:1-11.
Drew T, Aliakoki L. A new method of fixation in osteoporotic bone. A preliminary report. Injury. 2002;33:685-9.
Yu Y, Pan K, Wang G. Femoral trochanteric fracture: PFNA spiral blade placement with the aid of an angler. J Int Med Res [Internet]. 2020 Mar[cited 2020 May 20];48(3):1-11. Disponible en: https://us.sagepub.com/en-us/nam/open-access-at-sage
Epari W, Deirkat MAO. Development of biphasic plate for the distal femur fractures, AO Research Institute Davos and Queensland Uni. Australia. 2019. [Acceso: 9 de mayo de 2020]. Disponble en: https://www.AOfoundation.org/who -ive -ac/about -ao/news/2019/201904 biphasic plate
Britt Bolhoffer. Tibial shaft fracture complications. Master Techniques in Orthopedic Surgery 2da Edition LippincotW ill .2006 Section II Chapter 28:453-66.
Vallet M, Munuera L. Biomateriales aquí y ahora. Madrid: Editorial Dickinson; 2000.
Emerson Rh, Mociel S. Effect of circunferential Plasma Spray Porous Coating in the rate of femoral osteolysis after THA. J. Bone Joint Surg. 1999;81A:1291.
Cook SD, Kay J F. Hydroxyapatite coated porous titanium, for use as orthopedic biologic attachment system. Clinic. Ortho. 1988;230:302-12.
Perren SM, Boertzy A. Cellular diferentattion and bone biomechanics during the consolidation of a fracture Ann. Clini.1978;1:13-8.
84 - Bergdahl C, Ekholm H, Wennegrin I. Epidemiology and patho- anatomical patterns of humeral fractures: data from Swedish fracture register Musculoskeletal Divs. 2016;17:159-69.
Giannoudis P V, Panteli M, Calori GM. Bone Healing: The Diamond Concept BT - European Instructional Lectures: Volume 14, 2014, 15th EFORT Congress, London, United Kingdom. In: Bentley G, editor. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 3-16. Disponible en: https://doi.org/10.1007/978-3-642-54030-1_1