2003, Number 1
<< Back Next >>
Rev Hosp M Gea Glz 2003; 6 (1)
Comparison of the effectiveness of antibiotic β-lactamase in stumps of Staphylococcus aureus
Monroy PE, Paniagua CGL, Vaca PS, González ASE
Language: Spanish
References: 23
Page: 7-12
PDF size: 78.03 Kb.
ABSTRACT
In recent years the treatment of infections caused by Staphylococcus aureus
have posed a serious problem, since most strains of this bacterium have evolved as resistant to the main groups of antibiotics. The purpose of this work was to determine the resistance to β-lactam antibiotics to 73 S. aureus
clinical strains isolated from patients of Tlalnepantla, State of Mexico. Minimal inhibitory concentrations (MIC) of penicillin, ampicillin, dicloxacillin, cephalothin, cefuroxime, ceftriaxone, and ampicillin plus sulbactam, were determined by plate macrodilution as recommended by The National Committee for Clinical Laboratory Standards. MICs50/sub> were: penicillin 217 µg/mL, ampicillin 70 µg/mL, dicloxacillin 120 µg/mL, cephalothin 61.7 µg/mL, cefuroxime 38.5 µg/mL, ceftriaxone 11.1 µg/mL, and ampicillin plus sulbactam 8.3 µg/mL. MICs50 were penicillin 1,300 µg/mL, ampicillin 1,000 µg/mL, dicloxacillin 1,000 µg/mL, cephalothin 760 µg/mL, cefuroxime 375 µg/mL, ceftriaxone 38.5 µg/mL, and ampicillin plus sulbactam 85 µg/mL. Eighty five percent of the strains produced β-lactamase. These results show that cefuroxime, ceftriaxone, and ampicillin plus sulbactam were the most effective antibiotics against the S. aureus
strains studied, and point out the importance of permanently asses the antibiotic resistance progression of these bacteria.
REFERENCES
Lowy FD. Staphylococcus aureus infection. N Engl J Med 1998; 320: 520-532.
Crossley KB, Archer GL. The Staphylococci in human diseases. New York Churchill Livingstone. 1997.
Romero-Vivas J, Rubio M, Fernández C, Picazo JJ. Mortality associated with nosocomial bacteremia due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 1995; 21: 1417-1423.
Conterno LO, Wey SB, Castelo A. Risk factors for mortality in Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 1998; 19: 32-37.
Calderón-Jaimes E, Espinosa de los Monteros LE, Ávila-Beltrán R. Epidemiology of drug resistance: The case of Staphylococcus aureus and coagulase-negative staphylococci infections. Salud Pública Mex 2002; 44: 108-112.
Novick RP. Staphylococcus. In: Sonenshein AL, Hoch JA, R. Losick (eds). Bacillus subtillus and other Gram-positive bacteria. Biochemistry, Physiology and Molecular Genetics, American Society for Microbiology, USA. 1993: 17-33.
Sykes RB, Mathew M. The β-lactamases of Gram-negative bacteria and their role in resistance to β-lactam antibiotics. J Antimicrob Chemother 1976; 2: 115-157.
Chambers HF. Methicillin resistance in staphylococci. Molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997; 10: 781-791.
Hartman BJ, Tomasz A. Low-affinity penicillin binding protein associated with β-lactam resistance in Staphylococcus aureus. J Bacteriol 1984; 158: 513-516.
Fasola EL, Fasching CF, Peterson LR. Molecular correlation between in vitro and in vivo activity of beta-lactam and betalactamase inhibitor combinations against methicillin-resistant Staphylococcus aureus. J Lab Clin Med 1995; 125: 200-211.
Panililio AL, Culver DH, Garne RP. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991. Infect Control Hosp Epidemiol 1992; 13: 582-86.
Pfaller MA, Jones RN, Doren GV, Sader HS, Kugler KC, Beach ML. Survey of bloodstream infections due to Gram-positive cocci: Frequency of ocurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada, and Latin America for the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 1999; 33: 283-297.
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing: Tenth informational supplement Wayne (PA). National Committee for Clinical Laboratory Standards. 2000; M100-S10.
O’Callaghan CH, Morris A, Kirby SM, Shingler SH. Novel method for detection of beta-lactamase by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1972; 1: 283-288.
Urassa WK, Haule EA, Kagoma C, Langeland N. Antimicrobial susceptibility of Staphylococcus aureus strains at Muhimbili Medical Centre, Tanzania. East Afr Med J 1999; 76: 693-695.
Hammond ML, Norriss MS. Antibiotic resistance among respiratory pathogens in preschool children. Med J Aust 1995; 163: 239-242.
Paniagua CGL, Monroy PE, García GO, Vaca PS. Effect of betalactamase inhibitors on minimum inhibitory concentration of ampicillin and amoxicillin for Staphylococcus aureus strains. Rev Lat Amer Microbiol 1998; 40: 128-134.
Jiménez E. Patrones de resistencia a antibióticos en bacterias aisladas de pacientes de la Clínica Universitaria Iztacala durante 7 años. Tesis de licenciatura. ENEP-Iztacala. UNAM 1996.
Chang SC, Hsieh WC, Luh KT. Influence of beta-lactamase inhibitors on the activity of oxacillin against methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 1995; 21: 81-84.
Monroy PE. Resistencia a antibióticos y metales pesados en cepas clínicas de Staphylococcus aureus. Tesis de Maestría. FES-Cuautitlán, UNAM 1997.
Obi CL, Iyiegbuniwe AE, Olukoya DK, Babalola C, Igumbor EO, Okonta AA. Antibiograms and plasmids of Staphylococcus aureus and coagulase negative staphylococci isolated from different clinical sources. Cent Afr J Med 1996; 42: 258-261.
Simonet M, Hermann JL, Veron M. Activity of cefuroxime against bacterial strains isolated from acute otitis media. Pathol Biol 1990; 38: 355-357.
Guglielmo BJ, Luber AD, Paletta Jr D, Jacobs RA. Ceftriaxone therapy for Staphylococcal osteomyelitis. Clin Infect Dis 2000; 30: 205-207.