2021, Number 2
<< Back Next >>
Odovtos-Int J Dent Sc 2021; 23 (2)
Analysis of the Mechanical Behavior and Effect of Cyclic Fatigue on the Implant-Abutment Interface
Germán SR, Ortiz MM, Sánchez RP, Zavala AN, Romo RGF
Language: English
References: 40
Page: 104-114
PDF size: 621.27 Kb.
ABSTRACT
Purpose: The seal of the interface formed at the implant-abutment
connection is essential for the long-term success of the implant-supported restoration.
The aim of this study was to analyze the mechanical behavior and the effect of cyclic
fatigue before and after in the marginal fit of implant-abutment according to the
manufacturing technique of the abutment.
Materials and methods: Machined titanium
abutments (DENTIS), cast abutments with Nickel-Chromium alloy (VeraBond II), and
manufacturing custom milled Zirconia abutments (Zirkonzahn) were evaluated. The
implant-abutment assemblies were subjected to cyclic loads of 133 N at a frequency
of 19.1 Hz for 200,000 cycles. The microgap was measured using Scanning Electronic
Microscope and the distribution of compressive stress by the three-dimensional Finite
Element (FE) method.
Results: The microgap measurement values of the machined
abutments were 1.62µm and 1.92µm, cast abutments were 14.14 µm, and 28.44
µm, and the milled abutments were 14.18µm and 20.15µm before and after cyclic
fatigue, respectively. Only the cast abutments and the machined abutments showed
a statistically significant difference before and after cyclic fatigue (p≤0.05). The FE
analysis showed that the critical areas of compressive stress were located at the implant-abutment connection, increasing in the cast abutments and decreasing in the
milled and the machined abutments.
Conclusion: Cyclic fatigue exerts an effect on
the dimensions of the microgap at the implant-abutment interface before and after
loading; this microgap depends of the type of abutment material and the manufacturing
technique.
REFERENCES
Broggini N., McManus LM., Hermann JS., Medina RU., Oates TW., Schenk RK., et al. Persistent acute inflammation at the implantabutment interface. J Dent Res. 2003; 82 (3): 232-237.
Asvanund P., Morgano M. Photoelastic stress analysis of external versus internal implantabutment connections. J Prosthet Dent. 2011; 106 (4): 266-271.
Gil F.J., Herrero-Climent M., Lázaro P., Ríos JV. Implant-abutment connections: influence of the de- sign on the microgap and their fatigue and fracture behavior of dental implants. J Mater Sci: Mater Med. 2014; 25 (7): 1825-1830.
Bacchi A., Consani RLX., Mesquita MF., dos Santos MBF. Stress distribution in fixed-partial prosthesis and periimplant bone tissue with different framework materials and vertical misfit levels: a three-dimensional finite element analysis. J Oral Science. 2013; 55 (3): 239-245.
Hu M., Chen J., Pei X., Han J., Wang J. Network meta-analysis of survival rate and complications in implant-supported single crowns with different abutment materials. J Dent. 2019; 88: 103115.
Dantas T.S., Silveira Rodrigues R.C., Naves L.Z., Lapria Faria A.C., Palma-Dibb R.G., Ribeiro R.F. Effects of surface treatments on mechanical behavior of sintered and pre-sintered yttria-stabilized zirconia and reliability of crowns and abutments processed by CAD/CAM. Int J Oral Maxillofac Implants. 2019; 34 (4): 907-919.
Welander M., Abrahamsson I., Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008; 19 (7): 635-641.
Abrahamsson I., Berglundh T., Lindhe J. The mucosal barrier following abutment dis/ reconnection. An experimental study in dogs. J Clinical Periodontol. 1997; 24 (8): 568-572.
Larrucea Verdugo C., Jaramillo Núñez G., Acevedo Avila A., Larrucea San Martín C. Microleakage of the prosthetic abutment/ implant interface with internal and external connection: in vitro study. Clin Oral Implants Res. 2014; 25 (9): 1078-1083.
Rack A., Rack T., Stiller M., Riesemeier H., Zabler S., Nelson K. In vitro synchrotron-based radiography of micro-gapformation at the implant-abutment interface of two-piecedental implants. J Synchrotron Rad. 2010; 17 (2): 289-294.
Zabler S., Rack T., Rack A., Nelson K. Fatigue induced deformation of taper connections in dental titanium implants. Int. J Mater Res. 2012; 103 (2); 207-216.
Baggi L., Cappelloni I., Di Girolamo IM., Maceri F., Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite finite element analysis. J Prosthet Dent. 2008; 100 (6): 422-431.
Jansen V., Conrads G., Richter E. Microbial leakage and marginal fit of the implantabutment interface. Int J Oral Maxillofac Implants. 1997; 12 (4): 527-540
Quirynen M., van Steenberghe D. Bacterial colonization of the internal part of two-stage implants. An in vivo study. Clin Oral Impl Res. 1993; 4 (3): 158-161.
Keller W., Brägger U., Mombelli A. Peri-implant microflora of implants with cemented and screw retained suprastructures. Clin Oral Impl Res. 1998; 9 (4): 209-217.
Gross M., Abramovich I., Weiss EI. Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. Int J Oral Maxillofac Implants. 1999; 14 (1): 94-100.
International Organization for Standardization. ISO 14801:2016. Dentistry–implantsdynamic fatigue test for endosseous dental implants. Geneva: International Organization for Standardization; 2016. Available at: http:// www.iso.org/iso/home.html
Çağlar A., Turhan Bal B., Karakoca S., Aydın C., Yılmaz H., Sarısoy Ş. Three-dimensional finite element analysis of titanium and yttriumstabilized zirconium dioxide abutments and implants. Int J of Oral & Maxillofac Implants. 2011; 26 (5): 961-969.
Ozen J., Caglar A., Beydemir B., Aydin C., Dalkiz M. Three-dimensional finite element stress analysis of different core materials in maxillary implant-supported fixed partial dentures. Quintessence Int. 2007; 38 (6): 355-363.
Bidez MW., Misch CE. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol. 1992; 18 (3): 264-274.
Barry M., Kennedy D., Keating K., Schauperl Z. Design of dynamic test equipment for the testing of dental implants. Materials and Design. 2005; 26 (3): 209-216.
ISO 5832-3:1996 (E). Implants for Surgery- Metallic Materials-Part 3: Wrought Titanium 6-Aluminium 4 Vanadium Alloy. Geneva:International Organization for Standatrization 1996;42.
Sui X., Wei H., Wang D., Han Y., Deng J., Wang Y., et al. Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments. J Dent. 2014; 42 (10): 1353-1359.
Binon PP., McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont. 1996; 9 (6): 511-519.
Şen N., Şermet IB., Gürler N. Sealing capability and marginal fit of titanium versus zirconia abutments with different connection designs. J Adv Prosthodont. 2019; 11 (2): 105-111.
Blum K., Wiest W., Fella C., Balles A., Dittmann J., Rack A., et al. Fatigue induced changes in conical implant-abutment connections. Dent Mater. 2015; 31 (11): 1415-1426.
Jesus Tavarez RR., Bonachela WC., Xible AA. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment. J Appl Oral Sci. 2011; 19 (1): 16-21.
Faot F., Suzuki D., Senna PM., da Silva WJ., de Mattias Sartori IA. Discrepancies in marginal and internal fits for different metal and alumina infrastructures cemented on implant abutments. Eur J Oral Sci. 2015; 123 (3): 215-219.
Dibart S., Warbington M., Su MF., Skobe Z. In vitro evaluation of the implant- abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants. 2005; 20 (5): 732-737.
Tsuge T., Hagiwara Y., Matsumura H. Marginal fit and microgaps of implant-abutment interface with internal anti-rotation configuration. Dent Mater J. 2008; 27 (1): 29-34.
Khraisat A., Abu-Hammad O., Al-Kayed AM., Dar-Odeh N. Stability of the implant/abutment joint in a single tooth externalhexagon implant-system: clinical and mechanical review. Clin Implant Dent Relat Res. 2004; 6 (4): 222-229
Byrne D., Houston F., Cleary R., Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent. 1998; 80 (2): 184-192.
Cavusoglu Y., Akça K., Gürbüz R., Cehreli MC. A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. Int J Oral Maxillofac Implants. 2014; 29 (2): 338-343.
Sen N., Us YO. Fatigue survival and failure resistance of titanium versus zirconia implant abutments with various connection designs. J Prosthet Dent 2019; 122 (3): 315.e1-315.e7.
Baixe S., Fauxpoint G., Arntz Y., Etienne O. Microgap between zirconia abutments and titanium implants. Int J Oral Maxillofac Implants. 2010; 25 (3): 455-460.
Klotz MW., Taylor TD., Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants. 2011; 26 (5): 970-975.
Naveau A., Rignon-Bret C., Wulfman C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J Prosthet Dent. 2019; 121 (5): 775-781.e1.
Sannino G., Barlattani A. Mechanical evaluation of an implant-abutment self-locking taper connection: finite element analysis and experimental tests. Int J Oral Maxillofac Implants. 2013; 28: 17-26.
Cho SY., Huh YH., Park CJ., Cho LR. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant- Abutment Engagement Features. Int J Oral Maxillofac Implants. 2018; 33 (2): 319-327.
Cho SY., Huh YH., Park CJ., Cho LR. Threedimensional finite element analysis of the stress distribution at the Iinternal implantabutment connection. Int J Periodontics Restorative Dent. 2016; 36: 49-58.