2021, Número 2
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2021; 23 (2)
Análisis del comportamiento mecánico y efecto de la fatiga cíclica en la interface implante-pilar
Germán SR, Ortiz MM, Sánchez RP, Zavala AN, Romo RGF
Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 104-114
Archivo PDF: 621.27 Kb.
RESUMEN
Propósito: El sellado de la interface de la conexión implante-pilar es
esencial para el éxito a largo plazo de la restauración implantosoportada. El objetivo
de este estudio fue analizar el comportamiento mecánico y el efecto de la fatiga cíclica
antes y después en el sellado de la conexión implante-pilar de acuerdo a la ténica de
fabricación del pilar.
Materiales y Métodos: Pilares mecanizados de titanio (DENTIS),
pilares calcinables colados con aleación Niquel-Cromo (VeraBond II) y pilares fresados
de Zirconia (Zirkonzahn) fueron evaluados. Los implantes y pilares atornillados se
sometieron a una carga de 133 N a una frecuencia de 19.1 Hz durante 200 000 ciclos.
El microgap fue medido con el Microscopio Electrónico de Barrido y la distribución
del esfuerzo de compresión por el método tridimensional de Elemento Finito (EF).
Los valores del microgap de los pilares mecanizados fueron de 1.62µm y 1.92µm,
en los pilares calcinables fue de 14.14µm y 20.15µm, y los pilares fresados fue de
14.18µm y 28.44 µm antes y después de la fatiga cíclica, respectivamente. Los pilares
calcinables y lo mecanizados mostraron diferencia estadísticamente significativa
antes y después de la fatiga cíclica (p≤0.05). El análisis por EF mostró que las áreas
críticas del esfuerzo de compresión estaban localizadas en la conexión implante-pilar,
aumentando en los pilares calcinables y disminuyendo en los pilares fresados y en
los mecanizados.
Conclusión: La fatiga cíclica ejerce un efecto sobre las dimensiones
del microgap en la interface implante-pilar antes y después de la carga cíclica; este
microgap depende del tipo de material y de la técnica de fabricación del pilar.
REFERENCIAS (EN ESTE ARTÍCULO)
Broggini N., McManus LM., Hermann JS., Medina RU., Oates TW., Schenk RK., et al. Persistent acute inflammation at the implantabutment interface. J Dent Res. 2003; 82 (3): 232-237.
Asvanund P., Morgano M. Photoelastic stress analysis of external versus internal implantabutment connections. J Prosthet Dent. 2011; 106 (4): 266-271.
Gil F.J., Herrero-Climent M., Lázaro P., Ríos JV. Implant-abutment connections: influence of the de- sign on the microgap and their fatigue and fracture behavior of dental implants. J Mater Sci: Mater Med. 2014; 25 (7): 1825-1830.
Bacchi A., Consani RLX., Mesquita MF., dos Santos MBF. Stress distribution in fixed-partial prosthesis and periimplant bone tissue with different framework materials and vertical misfit levels: a three-dimensional finite element analysis. J Oral Science. 2013; 55 (3): 239-245.
Hu M., Chen J., Pei X., Han J., Wang J. Network meta-analysis of survival rate and complications in implant-supported single crowns with different abutment materials. J Dent. 2019; 88: 103115.
Dantas T.S., Silveira Rodrigues R.C., Naves L.Z., Lapria Faria A.C., Palma-Dibb R.G., Ribeiro R.F. Effects of surface treatments on mechanical behavior of sintered and pre-sintered yttria-stabilized zirconia and reliability of crowns and abutments processed by CAD/CAM. Int J Oral Maxillofac Implants. 2019; 34 (4): 907-919.
Welander M., Abrahamsson I., Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008; 19 (7): 635-641.
Abrahamsson I., Berglundh T., Lindhe J. The mucosal barrier following abutment dis/ reconnection. An experimental study in dogs. J Clinical Periodontol. 1997; 24 (8): 568-572.
Larrucea Verdugo C., Jaramillo Núñez G., Acevedo Avila A., Larrucea San Martín C. Microleakage of the prosthetic abutment/ implant interface with internal and external connection: in vitro study. Clin Oral Implants Res. 2014; 25 (9): 1078-1083.
Rack A., Rack T., Stiller M., Riesemeier H., Zabler S., Nelson K. In vitro synchrotron-based radiography of micro-gapformation at the implant-abutment interface of two-piecedental implants. J Synchrotron Rad. 2010; 17 (2): 289-294.
Zabler S., Rack T., Rack A., Nelson K. Fatigue induced deformation of taper connections in dental titanium implants. Int. J Mater Res. 2012; 103 (2); 207-216.
Baggi L., Cappelloni I., Di Girolamo IM., Maceri F., Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite finite element analysis. J Prosthet Dent. 2008; 100 (6): 422-431.
Jansen V., Conrads G., Richter E. Microbial leakage and marginal fit of the implantabutment interface. Int J Oral Maxillofac Implants. 1997; 12 (4): 527-540
Quirynen M., van Steenberghe D. Bacterial colonization of the internal part of two-stage implants. An in vivo study. Clin Oral Impl Res. 1993; 4 (3): 158-161.
Keller W., Brägger U., Mombelli A. Peri-implant microflora of implants with cemented and screw retained suprastructures. Clin Oral Impl Res. 1998; 9 (4): 209-217.
Gross M., Abramovich I., Weiss EI. Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. Int J Oral Maxillofac Implants. 1999; 14 (1): 94-100.
International Organization for Standardization. ISO 14801:2016. Dentistry–implantsdynamic fatigue test for endosseous dental implants. Geneva: International Organization for Standardization; 2016. Available at: http:// www.iso.org/iso/home.html
Çağlar A., Turhan Bal B., Karakoca S., Aydın C., Yılmaz H., Sarısoy Ş. Three-dimensional finite element analysis of titanium and yttriumstabilized zirconium dioxide abutments and implants. Int J of Oral & Maxillofac Implants. 2011; 26 (5): 961-969.
Ozen J., Caglar A., Beydemir B., Aydin C., Dalkiz M. Three-dimensional finite element stress analysis of different core materials in maxillary implant-supported fixed partial dentures. Quintessence Int. 2007; 38 (6): 355-363.
Bidez MW., Misch CE. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol. 1992; 18 (3): 264-274.
Barry M., Kennedy D., Keating K., Schauperl Z. Design of dynamic test equipment for the testing of dental implants. Materials and Design. 2005; 26 (3): 209-216.
ISO 5832-3:1996 (E). Implants for Surgery- Metallic Materials-Part 3: Wrought Titanium 6-Aluminium 4 Vanadium Alloy. Geneva:International Organization for Standatrization 1996;42.
Sui X., Wei H., Wang D., Han Y., Deng J., Wang Y., et al. Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments. J Dent. 2014; 42 (10): 1353-1359.
Binon PP., McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont. 1996; 9 (6): 511-519.
Şen N., Şermet IB., Gürler N. Sealing capability and marginal fit of titanium versus zirconia abutments with different connection designs. J Adv Prosthodont. 2019; 11 (2): 105-111.
Blum K., Wiest W., Fella C., Balles A., Dittmann J., Rack A., et al. Fatigue induced changes in conical implant-abutment connections. Dent Mater. 2015; 31 (11): 1415-1426.
Jesus Tavarez RR., Bonachela WC., Xible AA. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment. J Appl Oral Sci. 2011; 19 (1): 16-21.
Faot F., Suzuki D., Senna PM., da Silva WJ., de Mattias Sartori IA. Discrepancies in marginal and internal fits for different metal and alumina infrastructures cemented on implant abutments. Eur J Oral Sci. 2015; 123 (3): 215-219.
Dibart S., Warbington M., Su MF., Skobe Z. In vitro evaluation of the implant- abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants. 2005; 20 (5): 732-737.
Tsuge T., Hagiwara Y., Matsumura H. Marginal fit and microgaps of implant-abutment interface with internal anti-rotation configuration. Dent Mater J. 2008; 27 (1): 29-34.
Khraisat A., Abu-Hammad O., Al-Kayed AM., Dar-Odeh N. Stability of the implant/abutment joint in a single tooth externalhexagon implant-system: clinical and mechanical review. Clin Implant Dent Relat Res. 2004; 6 (4): 222-229
Byrne D., Houston F., Cleary R., Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent. 1998; 80 (2): 184-192.
Cavusoglu Y., Akça K., Gürbüz R., Cehreli MC. A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. Int J Oral Maxillofac Implants. 2014; 29 (2): 338-343.
Sen N., Us YO. Fatigue survival and failure resistance of titanium versus zirconia implant abutments with various connection designs. J Prosthet Dent 2019; 122 (3): 315.e1-315.e7.
Baixe S., Fauxpoint G., Arntz Y., Etienne O. Microgap between zirconia abutments and titanium implants. Int J Oral Maxillofac Implants. 2010; 25 (3): 455-460.
Klotz MW., Taylor TD., Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants. 2011; 26 (5): 970-975.
Naveau A., Rignon-Bret C., Wulfman C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J Prosthet Dent. 2019; 121 (5): 775-781.e1.
Sannino G., Barlattani A. Mechanical evaluation of an implant-abutment self-locking taper connection: finite element analysis and experimental tests. Int J Oral Maxillofac Implants. 2013; 28: 17-26.
Cho SY., Huh YH., Park CJ., Cho LR. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant- Abutment Engagement Features. Int J Oral Maxillofac Implants. 2018; 33 (2): 319-327.
Cho SY., Huh YH., Park CJ., Cho LR. Threedimensional finite element analysis of the stress distribution at the Iinternal implantabutment connection. Int J Periodontics Restorative Dent. 2016; 36: 49-58.