2021, Number 1
In vitro and in silico biological evaluation of phthalimide derivatives as antiproliferative agents
Language: English
References: 35
Page:
PDF size: 985.86 Kb.
ABSTRACT
Phthalimide is considered a scaffold for the development of new anticancer agents. In this work, the antiproliferative activity of forty-three phthalimide derivatives was evaluated against cervical (HeLa), liver (HepG2), breast (4T1) cancer cell lines, and a normal cell line of murine fibroblasts (3T3). Finally, a molecular docking analysis of phthalimide derivatives on the active site of the enzymes DNA methyltransferase 1 (DNMT1) and vascular endothelial growth factor receptor 2 (VEGR2) as potential drug targets was performed. The compounds, C16, E11, and E16 showed the best antiproliferative activity against the cell lines HeLa and 4T1. Only, the compound H16 decreased 32% cell proliferation against HepG2 cell line. The compounds H5, H16, E2, E16, and C1 did not affect the proliferation of the 3T3 cell line. The molecular docking analysis showed that phthalimide derivatives have a greater affinity for DNMT1 than S-adenosyl-l-homocysteine, a potent DNMT1 inhibitor. However, molecular docking results do not correlate with their antiproliferative effects, suggesting another potential mechanism of action for the active compounds.REFERENCES
Abdelhaleem, E. F., Abdelhameid, M. K., Kassab, A. E. & Kandeel, M. M. (2018). Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. European Journal of Medicinal Chemistry, 143, 1807-1825. https://doi.org/10.1016/j.ejmech.2017.10.075
Al-Abbasi, F. A., Alghamdi, E. A., Baghdadi, M. A., Alamoudi, A. J., El-Halawany, A. M., El-Bassossy, H. M., Aseeri, A. H. & Al-Abd, A. M. (2016). Gingerol Synergizes the Cytotoxic Effects of Doxorubicin against Liver Cancer Cells and Protects from Its Vascular Toxicity. Molecules, 21(7), 886. https://doi.org/10.3390/molecules21070886
Aliabadi, A., Mohammadi-Farani, A., Hosseinzadeh, Z., Nadri, H., Moradi, A. & Ahmadi, F. (2015). Phthalimide analogs as probable 15-lipoxygenase-1 inhibitors: synthesis, biological evaluation and docking studies. Daru Journal of Pharmaceutical Sciences, 23(1), 36. https://doi. org/10.1186/s40199-015-0118-5
Asgatay, S., Champion, C., Marloie, G., Drujon, T., Senamaud- Beaufort, C., Ceccaldi, A., Erdmann, A., Rajavelu, A., Schambel, P., Jeltsch, A., Lequin, O., Karoyan, P., Arimondo, P. B. & Guianvarc’h, D. (2014). Synthesis and evaluation of analogues of N-phthaloyl-L-tryptophan (RG108) as inhibitors of DNA methyltransferase 1. Journal of Medicinal Chemistry, 57, 421-434. https://doi.org/10.1021/jm401419p
Bailly, C., Carrasco, C., Joubert, A., Bal, C., Wattez, N., Hildebrand, M.P., Lansiaux, A., Colson, P., Houssier, C., Cacho, M., Ramos, A. & Braña, M.F. (2003). Chromophore-modified bisnaphthalimides: DNA recognition, topoisomerase inhibition, and cytotoxic properties of two mono-and bisfuronaphthalimides. Biochemistry, 42, 4136-4150. https://doi.org/10.1021/ bi027415c
Chen, Z., Liang, X., Zhang, H., Xie, H., Liu, J., Xu, Y., Zhu, W., Wang, Y., Wang, X., Tan, S., Kuang, D. & Qian, X. (2010). A new class of naphthalimide-based anti-tumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. Journal of Medicinal Chemistry, 53, 2589-2600. https://doi. org/10.1021/jm100025u
Kashif, M., Chacón-Vargas, K. F., López-Cedillo, J. C., Nogueda-Torres, B., Paz-González, A. D., Ramírez- Moreno, E., Agusti, R., Uhrig, M. L., Reyes-Arellano, A., Peralta-Cruz, J., Ashfaq, M. & Rivera, G. (2018). Synthesis, molecular docking and biological evaluation of novel phthaloyl derivatives of 3-amino-3-aryl propionic acids as inhibitors of Trypanosoma cruzi trans-sialidase. European Journal of Medicinal Chemistry, 156, 252-268. https://doi. org/10.1016/j.ejmech.2018.07.005
Lu, G. Q., Li, X.Y., Mohamed, O. K., Wang, D. & Meng, F. H. (2019). Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. European Journal of Medicinal Chemistry, 171, 282-296. https://doi.org/10.1016/j. ejmech.2019.03.047
Miyachi, H., Ogasawara, A., Azuma, A. & Hashimoto, Y. (1997). Tumor necrosis factor-alpha production-inhibiting activity of phthalimide analogues on human leukemia THP-1 cells and a structure-activity relationship study. Bioorganic & Medicinal Chemistry, 5, 2095-2102. https:// doi.org/10.1016/S0968-0896(97)00148-X
Olazarán-Santibáñez, F., Bandyopadhyay, D., Carranza- Rosales, P., Rivera, G. & Balderas-Rentería, I. (2017a). Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams. Oncotarget, 8, 37773-37782. https://doi. org/10.18632/oncotarget.18077
Olazarán, F. E., Rivera, G., Pérez-Vázquez, A. M., Morales- Reyes, C.M., Segura-Cabrera, A. & Balderas-Rentería, I. (2017b). Biological Evaluation in vitro and in silico of Azetidin-2-one Derivatives as Potential Anticancer Agents. ACS Medicinal Chemistry Letters, 8, 32-37. https://doi. org/10.1021/acsmedchemlett.6b00313
Othman, I. M. M., Gad-Elkareem, M. A. M., El-Naggar, M., Nossier, E. S. & Amr, A. E. E. (2019). Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1259-1270. https://doi. org/10.1016/j.bioorg.2019.102978
Rivera, G., Ahmad-Shah, S. S., Arrieta-Baez, D., Palos, I., Mongue, A. & Sánchez-Torres, L. E. (2017a). Esters of Quinoxaline 1,4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel. Iranian Journal of Pharmaceutical Research, 16, 953-965. https://dx.doi. org/10.22037/ijpr.2017.2065
Rivera, G., Andrade-Ochoa, S., Romero, M. S. O., Palos, I., Monge, A. & Sanchez-Torres, L. E. (2017b). Ester of Quinoxaline-7-carboxylate 1,4-di-N-oxide as Apoptosis Inductors in K-562 Cell Line: An in vitro, QSAR and DFT Study. Anticancer Agents in Medicinal Chemistry, 17, 682-691. https://doi.org/10.2174/187152061666616 0630175927
Shiheido, H., Terada, F., Tabata, N., Hayakawa, I., Matsumura, N., Takashima, H., Ogawa, Y., Du, W., Yamada, T., Shoji, M., Sugai, T., Doi, N., Iijima, S., Hattori, Y. & Yanagawa, H. (2012). A phthalimide derivative that inhibits centrosomal clustering is effective on multiple myeloma. PLoS One, 7, e38878. https://doi.org/10.1371/journal.pone.0038878
Sundaresan, L., Kumar, P., Manivannan, J., Balaguru, U. M., Kasiviswanathan, D., Veeriah, V., Anishetty, S. & Chatterjee, S. (2019). Thalidomide and Its Analogs Differentially Target Fibroblast Growth Factor Receptors: Thalidomide Suppresses FGFR Gene Expression while Pomalidomide Dampens FGFR2 Activity. Chemistry Research in Toxicology, 32(4), 589-602. https://doi.org/10.1021/acs. chemrestox.8b00286
Xie, L., Cui, J., Qian, X., Xu, Y., Liu, J. & Xu, R. (2011). 5-Non-amino aromatic substituted naphthalimides as potential anti-tumor agents: synthesis via suzuki reaction, anti-proliferative activity, and DNA-binding behavior. Bioorganic & Medicinal Chemistry, 19, 961-967. https:// doi.org/10.1016/j.bmc.2010.11.055