2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Efecto de tratamiento con plasma frío en puré de jaca: descontaminación de esporas de Aspergillus niger y atributos de calidad
Casas-Junco PP, Solís-Pacheco JR, Ragazzo-Sánchez JA, Aguilar-Uscanga BR, Calderón-Santoyo M
Idioma: Ingles.
Referencias bibliográficas: 40
Paginas:
Archivo PDF: 283.64 Kb.
RESUMEN
El puré de jaca se contaminó artificialmente con esporas de
Aspergillus niger para tratarlo con plasma frío (30 W,
1.5 L / min de Helio, en un lapso de 0 a 16 min, posteriormente las muestras se almacenaron a 25 ºC durante 60 días en
los que no hubo crecimiento, ni cambios en los sólidos solubles totales, color o a
w, sin diferencias significativas en los
perfiles aromáticos y tampoco en las muestras no tratadas, en el pH y la acidez total los cambios fueron mínimos. Se
logró una reducción de 4 log (UFC / g) en las esporas de
Aspergillus niger, coliformes y bacterias mesófilas aerobias
después de 8 min de tratamiento a 30 W y 850 V con gas Helio. No se observó alteración en las propiedades sensoriales
del puré de jaca tratado. El plasma atmosférico frío es una tecnología no térmica prometedora para su uso en productos
de frutas procesadas.
REFERENCIAS (EN ESTE ARTÍCULO)
AOAC (2000). Official Method of Association of Official Analytical Chemists. Washington, D.C: Ed. AOAC International.
Bicas, J. L., Molina, G., Dionisio, A. P., Barros, F. F. C., Wagner, R., Maróstica Jr, M. R. & Pastore, G. M. (2011). Volatile constituents of exotic fruits from Brazil. Food Research International, 44,1843-1855.
Bourke, P., Ziuzina, D., Han, L., Cullen, P. & Gilmore, B. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308-324. https:// doi.org/10.1111/jam.13429
Damodaran, S. & Parkin, K. L. (2019). FENNEMA Química de los alimentos. 4ta Edición. Editorial Acribia. Madrid, España. ISBN 978-84-200-1192-9. 1126 p. Madrid, España
Diamanti, J., Balducci, F., Di Vittori, L., Capocasa, F., Mezzetti, B., Berdini, C., Bacchi, A., Mazzoni, L. & Giampieri, F. (2016). Effect of strawberry fruit phytochemical composition on color stability of thermal processed puree after long-term storage under ambient and refrigeration conditions. Acta Horticulturae, 1117, 213-220. https://doi. org/10.17660/ActaHortic.2016.1117.34
Eduard, W. (2009). Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology, 39(10), 799-864. https://doi. org/10.3109/10408440903307333
Fernández, A., Shearer, N., Wilson, D. & Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3), 175-180. https://doi.org/10.1016/j. ijfoodmicro.2011.02.038
Guo, J., Huang, K. & Wang, J. (2015). Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control, 50, 482-490. https://doi. org/10.1016/j.foodcont.2014.09.037
Hähnel, M., von Woedtke, T. & Weltmann, K. D. (2010). Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Processes and Polymers, 7(3-4), 244-249. https://doi. org/10.1002/ppap.200900076
Han, L., Boehm, D., Amias, E., Milosavljević, V., Cullen, P. & Bourke, P. (2016). Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innovative Food Science & Emerging Technologies, 38, 384-392. https://doi.org/10.1016/j. ifset.2016.09.026
Han, Y., Manolach, S. O., Denes, F. & Rowell, R. M. (2011). Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity. Carbohydrate Polymers, 86(2), 1031-1037. https://doi.org/10.1016/j. carbpol.2011.05.056
Harvey, R., Cornelissen, C. & Fisher, B. (2007). Lippincott’s Illustrated Reviews: Microbiology. Wolters Kluwer. ISBN: 978-1-60831-733-2
Hell, K., Gnonlonfin, B., Kodjogbe, G., Lamboni, Y. & Abdourhamane, I. (2009). Mycoflora and occurrence of aflatoxin in dried vegetables in Benin, Mali and Togo, West Africa. International Journal of Food Microbiology, 135(2), 99-104. https://doi.org/10.1016/j. ijfoodmicro.2009.07.039
Hertwig, C., Meneses, N. & Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology, 77, 131-142. https://doi.org/10.1016/j.tifs.2018.05.011
Kovačević, D., Putnik, P., Dragović, V., Pedisić, S., Jambrak, A. & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. https://doi. org/10.1016/j.foodchem.2015.05.099
Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric pressure plasmas: review, analysis, and prospects. IEEE Transactions on Plasma Science, 30(4), 1409-1415. 10.1109/TPS.2002.804220
Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y. & Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT-Food Science and Technology, 115, 108447. https://doi.org/10.1016/j.lwt.2019.108447
López, M., Calvo, T., Prieto, M., Múgica, R., Muro, I., Alba, F. & Alvarez, A. (2019). A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Frontiers in microbiology, 10, 622. https://doi.org/10.3389/ fmicb.2019.00622
Lu, X., Naidis, G., Laroussi, M., Reuter, S., Graves, D. & Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 630, 1-84. https://doi. org/10.1016/j.physrep.2016.03.003
Maltini, E., Torreggiani, D., Venir, E. & Bertolo, G. (2003). Water activity and the preservation of plant foods. Food Chemistry, 82(1), 79-86. https://doi.org/10.1016/S0308- 8146(02)00581-2
Marín, E., Lemus, R., Flores, V. & Vega, A. (2006). La rehidratación de alimentos deshidratados. Revista Chilena de Nutrición, 33(3), 527-538. 538. http://dx.doi. org/10.4067/S0717-75182006000500009
Mendis, D., Rosenberg, M. & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304-1306. 10.1109/27.893321
Misra, N., Yadav, B., Roopesh, M. & Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120.10.1111/1541-4337.12398
Moisan Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. & Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1), 1-21.
Montie, T. C., Kelly-Wintenberg, K. & Roth, J. R. (2000). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science, 28(1), 41-50. https://doi.org/10.1109/27.842860
Muranyi, P., Wunderlich, J. & Heise, M. (2007). Sterilization efficiency of a cascaded dielectric barrier discharge. Journal of Applied Microbiology, 103(5), 1535-1544. doi: 10.1111/j.1365-2672.2007.03385.x
NOM-130-SSA1-1995 (1995). Alimentos envasados en recipientes de cierre hermético y sometidos a tratamiento térmico. Disposiciones y especificaciones sanitarias. Diario Oficial de la Federación. México, D. F.
Pedrero, F., Daniel, L. & Pangborn, R. M. (1989). Evaluación sensorial de los alimentos; métodos analíticos. Alhambra Mexicana Editorial. ISBN: 9684440936, 9789684440937. 250 p. Mexico, D. F., Mexico
Pitt, J. I. & Hocking, A. D. (2009). Fungi and food spoilage. 3rd Edition, Springer Editorial. ISBN: 978-0-387-92207-2. 259 p. New York, NY, USA. https://doi.org/10.1007/978- 0-387-92207-2
Ragazzo-Sánchez, J. A., Gutiérrez-Escatel, A., Luna-Solano, G., Gómez-Leyva, J. F. & Calderón-Santoyo, M. (2011). Identificación molecular del hongo causante de la pudrición postcosecha de la jaca. Revista Mexicana de Micología, 34, 9-15.
Ramírez, N., Serrano, J. A. & Sandoval, H. (2006). Microorganismos extremófilos. Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmacéuticas, 37(3), 56-71. http://www.redalyc.org/articulo.oa?id=57937307
SAGARPA. Secretaría de agricultura, ganadería, desarrollo rural, pesca y alimentación. (2019). Available from: https:// www.gob.mx/agricultura/nayarit/articulos/la-importanciade- las-exportaciones-de-nayarit?idiom=es.
Solís-Pacheco, J., Villanueva-Tiburcio, J., Peña-Eguiluz, R., González-Reynoso, O., Cabrera-Díaz, E., GonzálezÁlvarez, V. & Aguilar-Uscanga, B. (2013). Effect of plasma energy on the antioxidant activity, total polyphenols and fungal viability in chamomile (Matricaria chamomilla) and cinnamon (Cinnamomum zeylanicum). The Journal of Microbiology, Biotechnology and Food Sciences, 2(5), 2318.
Solís-Solís, H. M., Calderón-Santoyo, M., Gutiérrez-Martínez, P., Schorr-Galindo, S. & Ragazzo-Sánchez, J. A. (2007). Discrimination of eight varieties of apricot (Prunus armeniaca) by electronic nose, LLE and SPME using GC–MS and multivariate analysis. Sensors and Actuators B: Chemical, 125(2), 415-421. https://doi.org/10.1016/j. snb.2007.02.035
Song, H.-P., Shim, S.-L., Lee, S.-I., Kim, D.-H., Kwon, J.-H. & Kim, K.-S. (2012). Analysis of volatile organic compounds of ‘Fuji’apples following electron beam irradiation and storage. Radiation Physics and Chemistry, 81(8), 1084-1087. https://doi.org/10.1016/j. radphyschem.2012.02.030
Surowsky, B., Fischer, A., Schlueter, O. & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies, 19, 146-152. https://doi.org/10.1016/j.ifset.2013.04.002
Tappi, S., Berardinelli, A., Ragni, L., Dalla, M., Guarnieri, A. & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science and Emerging Technologies, 21,114–22. https://doi.org/10.1016/j. ifset.2013.09.012
Tikekar, R. V., Anantheswaran, R. C. & LaBorde, L. F. (2011). Ascorbic acid degradation in a model apple juice system and in apple juice during ultraviolet processing and storage. Journal of Food Science, 76(2), H62-H71. https://doi. org/10.1111/j.1750-3841.2010.02015.x
Torres-Segundo, C., Vergara-Sánchez, J., Reyes-Romero, P. G., Gómez-Díaz, A., Rodríguez-Albarrán, M. J. & Martínez-Valencia, H. (2019). Effect on discoloration by nonthermal plasma in dissolved textile dyes: acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939-947. https://doi.org/10.24275/uam/izt/dcbi/ revmexingquim/2019v18n3/Torres
Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., Becker, K. & Fang, J. (2012). Atmosphericpressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66, 1-7.