2021, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Long-term treatment with electromagnetic fields in an animal model of Parkinson´s disease
Medina-Salazar I, Moreno-Fitz J, Jiménez G, Morales N, Pizarro M, Elías-Viñas D, Verdugo-Díaz L
Language: Spanish
References: 40
Page:
PDF size: 282.98 Kb.
ABSTRACT
Parkinson’s disease (PD) is a neurodegenerative disease that causes motor and non-motor alterations induced by the loss
of neurons of substance nigra pars compacta (SNc) In clinical therapy, the use of pharmacological treatments to improve
symptoms is commonly used. Recently, non-pharmacological techniques are being developed. Such is the case for
Electromagnetic Field Stimulation (EMF). Although this treatment has already been used in PD patients, its underlying
therapeutic mechanism remains unclear. Studies in animal models of PD have been performed but only for short periods
of stimulation with EMF. This study aimed to investigate motor behavior in hemiparkinsonian Wistar rats treated with
EMF of 60 Hz (2.4 mT) 2 hours daily for six months. Behavioral evaluations such as apomorphine-induced rotation,
open field test, elevated cross maze, and balance beam were performed monthly. Also, immunoreactive dopaminergic
neurons were counted, and their degree of loss was estimated. The main results showed that lesioned animals treated
with EMF, did not differ in weight gain compared to control animals. Furthermore, magnetic treatment reduced turning
behavior and improved balance, without significant changes in the survival of SNc dopaminergic neurons. These results
support the use of EMF as an alternative therapy that could help to improve the motor symptoms of PD.
REFERENCES
Akbarnejad, Z., Esmaeilpour, K., Shabani, M., Asadi- Shekaari, M., Saeedi, M. & Ahmadi-Zeidabadi, M. (2018). Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. Int. J. Neurosc., 128(8), 691-696. DOI: 00207454.2017.1411353
Allbutt, H. & Henderson, J. (2007). Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J. Neurosc. Meth., 159, 195-202. DOI: 10.1016/j. jneumeth.2006.07.006.
Arias-Carrión, O., Verdugo-Díaz, L., Feria-Velasco, A., Millán-Aldaco, D., Gutiérrez, A., Hernández-Cruz, A. & Drucker-Colin, R. (2004). Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J. Neurosci. Res., 78, 16–28. DOI: 10.1002/jnr.20235.
Badstuebner, K., Gimsa, U., Weber, I., Tuchscherer, A. & Gimsa, J. (2017). Deep Brain Stimulation of Hemiparkinsonian Rats with Unipolar and Bipolar Electrodes for up to 6 Weeks: Behavioral Testing of Freely Moving Animals. Parkinson Dis., 5693589. DOI: 10.1155/2017/569358.
Belyaev, I., Dean, A., Eger, H., Hubmann, G., Jandrisovits, R., Kern, M., Kundi, M., Moshammer, H., Lercher, P., Müller, K., Oberfeld, G., Ohnsorge, P., Pelzmann, P., Scheingraber, C. & Thill, R. (2016). “EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses”. Rev. Environ. Health, 31(3), 363-397. DOI: 10.1515/ reveh-2016-0011.
Blanco, L., Lorigados, L., Fernández, C., Serrano, T., Pavón, N. & Francis, L. (2010). Aplicación del test de la barra transversal modificado para evaluar ratas Hemiparkinsonizadas. Acta Biológica Colombiana, 15(2), 189-201.
Chance, W., Grossman, C., Newrock, R., Bovin, G., Yerian, K., Schmitt, G. & Mendenhall, C. (1995). Effects of electromagnetic fields and gender on neurotransmitters and amino acids in rats. Physiol. Behav., 58(4), 743-748. DOI: 10.1016/0031-9384(95)00090-6.
Cerri, S., Mus, L. & Blandini, F. (2019). Parkinson’s Disease in Women and Men: What’s the Difference? J. Parkinsons Dis., 9(3), 501-515. DOI: 10.3233/JPD-191683.
Chervyakov, A., Chernyavsky, A., Sinitsyn, D. & Piradov, M. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. Hum. Neurosci., 9, 303. DOI: 10.3389/fnhum.2015.00303.
Fàbregues, O., Gironell, A., Rosselló-Jiménez, D. & Regueras, E. (2017). Unidades de trastornos del movimiento y tratamiento de las fluctuaciones motoras de la enfermedad de Parkinson avanzada. Rev. Neurol., 65(09), 396-404. DOI: 10.33588/rn.6509.2017106.
Gervasi, F., Murtas, R., Decarli, A. & Russo, A. G. (2019). Residential distance from high-voltage overhead power lines and risk of Alzheimer’s dementia and Parkinson’s disease: a population-based case-control study in a metropolitan area of Northern Italy. Int. J. Epidemiol., Dec. 1, 48(6), 1949-1957.DOI: 10.1093/ije/dyz139.
Gómez-Chavarín, M., Diaz-Pérez, R., Morales-Espinoza, R., Fernandez-Ruis, J., Roldan-Roldan, G. &, Torner, C. (2013). Efecto de la exposición al pesticida rotenona sobre el desarrollo del sistema dopaminérgico nigroestriatal en ratas. Salud Mental, 36(1), 1-8.
Guimarães, J., Moura, E., Silva, E., Aguiar, P., Garrett, C. & Vieira-Coelho, M. A. (2013). Locus coeruleus is involved in weight loss in a rat model of Parkinson’s disease: an effect reversed by deep brain stimulation. Brain Stimul., 6(6), 845-855. DOI: 10.1016/j.brs.2013.06.002.
Gunnarsson, L.G. & Bodin, L. (2019). Occupational Exposures and Neurodegenerative Diseases-A Systematic Literature Review and Meta-Analyses. Int. J. Environ. Res. Public Health. Jan 26, 6(3), 337. DOI: 10.3390/ijerph16030337.
Horii, Y., McTaggart, I. & Kawaguchi, M. (2018). Testing Animal Anxiety in Rats: Effects of Open Arm Ledges and Closed Arm Wall Transparency in Elevated Plus Maze Test. J. Vis. Exp., Jun 29;(136), 56428. DOI: 10.3791/56428.
Hsieh, T. H., Huang, Y. Z., Rotenberg, A., Pascual-Leone, A., Chiang, Y. H., Wang, J. Y. & Chen, J. J. (2015). Functional Dopaminergic Neurons in Substantia Nigra are Required for Transcranial Magnetic Stimulation-Induced Motor Plasticity. Cereb. Cortex, 25(7), 1806-1814. DOI: 10.1093/cercor/bht421.
International Commission on Non-Ionizing Radiation Protection. (2010). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys., 99(6), 818-836. DOI: 10.1097/ HP.0b013e3181f06c86.
Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr., 79(4), 368– 376. DOI: 10.1136/jnnp.2007.131045.
Lai, J., Zhang, Y., Liu, X., Zhang, J., Ruan, G., Chaugai, S. & Wang, D.W. (2016). Effects of extremely low frequency electromagnetic fields (100 mT) on behaviors in rats. NeuroToxicology, 52, 104–113. DOI: 10.1016/j. neuro.2015.11.010.
Lee, H., Kim, S., Choi, S., Gimm, Y., Pack, J., Choi, H. D. & Lee, Y. S. (2006). Long-term exposure of Sprague Dawley rats to 20 kHz triangular magnetic fields. Int. J. Radiat. Biol., 82(4), 285-291. DOI: 10.1080/09553000600721809.
Lee, J., Kim, S., Ko, A-H., Lee, J., Yu, J., Seo, J., Cho, B. P. & Cho, S-R. (2013). Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson’s disease. Brain Res., 1537, 290-302. DOI: 10.1016/j.brainres.2013.08.051.
Liu, T., Wang, S., He, L. & Ye, K. (2008). Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. NeuroReport, 19(5), 549-552. DOI: 10.1097/WNR.0b013e3282f8b1a0.
Mahdavi, S., Sahraei, H., Rezaei-Tavirani, M. & Najafi, A. (2016). Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model. Electromagn. Biol. Med., 35(3), 222-227. DOI: 10.3109/15368378.2015.1054401 https://doi.org/1 0.3109/15368378.2015.105440
Malling, A. S. B., Morberg, B. M., Wermuth, L., Gredal, O., Bech, P. & Jensen, B. R. (2019). The effect of 8 weeks of treatment with transcranial pulsed electromagnetic fields on hand tremor and inter-hand coherence in persons with Parkinson’s disease. J. Neuroeng. Rehabil., 16(1),19. DOI: 10.1186/s12984-019-0491-2.
Mattsson, M. O. & Simko, M. (2019). “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz.” Med. Devices (Auckl), 12, 347- 368. DOI: 10.2147/MDER.S214152.
Miller, K. J., Suárez-Iglesias, D., Seijo-Martínez, M. & Ayán, C. (2020). Fisioterapia para la congelación de la marcha en la enfermedad de Parkinson: revisión sistemática y metaanálisis. Rev. Neurol., 70(05), 161-170. DOI: 10.33588/rn.7005.2019417.
Moreno-Fitz, J., Medina-Salazar, I., Chávez-Hernández, V., Elías-Viñas, D. & Verdugo-Díaz, L. (2015). Efecto de la exposición a campos magnéticos de extrema baja frecuencia en un modelo de hemiparkinson en ratas. Eneurobiología, 7(12), 290615.
Ni, Z. & Chen, R. (2015). Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl. Neurodegener., 4, 22. DOI: 10.1186/s40035-015-0045-x.
Picazo, O., Chuc-Meza, E., Anaya-Martinez, V., Jimenez, I., Aceves, J. & Garcia-Ramirez, M. (2009). 6-Hydroxydopamine lesion in thalamic reticular nucleus reduces anxiety behaviour in the rat. Behav. Brain Res., 197(2), 317-322. DOI: 10.1016/j.bbr.2008.08.047.
Paxinos, G. & Watson, Ch. (2005). The Rat Brain, in stereotaxic coordinates, San Diego: Elsevier Academic Press, 5ta ed.
Rektorová, L. & Anderkova, I. (2017). Noninvasive Brain Stimulation and Implications for Nonmotor Symptoms in Parkinson’s Disease. Int. Rev. Neurobiol., 134,1091-1110. DOI: 10.1016/bs.irn.2017.05.009.
Ruzika, F., Jech, R., Nova´kova, L., Urgos.i´k, D., Vymazal, J. & Růžička, E. (2012) Weight Gain Is Associated with Medial Contact Site of Subthalamic Stimulation in Parkinson’s Disease. PLoS ONE, 7(5), e38020. DOI: 10.1371/journal.pone.0038020.
Schmitt, U. & Hiemke, C. (1998). Combination of open field and elevated plus-maze: a suitable test battery to assess strain as well as treatment differences in rat behavior. Prog. Neuro-Psychopharmacol. & Biol. Psychiat., 22(7), 1197-1215. DOI: 10.1016/s0278-5846(98)00051-7.
Shukla, A. & Vaillancourt, D. (2014). Treatment and Physiology in Parkinson’s disease and Dystonia: Using TMS to Uncover the Mechanisms of Action. Curr. Neurol. Neurosci. Rep., 14(6), 449. DOI: 10.1007/s11910-014- 0449-5.
Shukla, A.W., Shuster, J. J., Chung, J. W., Vaillancourt, D E, Patten, C., Ostrem, J. & Okun, M. S. (2016). Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Meta-Analysis. PM R. Apr., 8(4), 356-366. DOI: 10.1016/j.pmrj.2015.08.009.
Szemerszky, R., Zelena, D., Barna, I. & Bárdos, G. (2010). Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Res. Bull., 81(1), 92–99. DOI: 10.1016/j.brainresbull.2009.10.015.
Tasset, I., Medina, F. J., Jimena, I., Agüera, E., Gascón, F., Feijóo, M., Sánchez-López, F., Luque, E., Peña, J., Drucker-Colín, R. & Túnez, I. (2012). Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience, 209, 54–63. DOI: 10.1016/j. neuroscience.2012.02.034.
Truong, L., Allbutt, H., Kassiou, M. & Henderson, J. M. (2006). Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav. Brain Res., 169, 1-9. DOI: 10.1016/j. bbr.2005.11.026.
Umarao, P., Bose, S., Bhattacharyya, S., Kumar, A. & Jain, S. (2016). Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson’s Disease. J. Nanosci. Nanotechnol., 16(1), 261-269. DOI: 10.1166/jnn.2016.11103.
Vieira, J. C. F., Bassani, T. B., Santiago, R. M., de O Guaita, G., Zanoeli, J. M., daCunha, C. & Vital, M. A. (2019). Anxiety-like behavior induced by 6-OHDA animal model of Parkinson’s disease may be related to a dysregulation of neurotransmitter systems in brain areas related to anxiety. Behav. Brain Res., 371, 111981. DOI: 10.1016/j. bbr.2019.111981.