2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Efecto de la aplicación de estiércoles composteados en la movilidad de las fracciones químicas del Cu en un suelo contaminado con residuos mineros
Mendoza-Jiménez MN, Quintero-Soriano RI, Duarte ZVM, Carrasco-Hernández V
Idioma: Español
Referencias bibliográficas: 37
Paginas:
Archivo PDF: 231.69 Kb.
RESUMEN
El intemperismo de los residuos mineros con alto contenido de sulfuros metálicos participa en la liberación y la movilidad
de los metales pesados, siendo uno de los principales factores de riesgo para el medioambiente y la salud pública. En este
trabajo se utilizaron dos tipos de estiércol para evaluar su efecto en las fracciones químicas móviles o biodisponibles del Cu
en un suelo contaminado con los residuos mineros. Se realizó un experimento usando un suelo contaminado artificialmente
con 25% de residuos mineros de Zimapán, al que se agregaron dosis crecientes de estiércol composteado de vaca y de cerdo
(0, 3, 6, 12 y 24%). La concentración pseudo-total del Cu se determinó por espectrofotometría de absorción atómica después
de una digestión ácida, mientras que las fracciones químicas del Cu se determinaron a partir de extracciones secuenciales.
Los resultados obtenidos presentaron una concentración pseudo-total elevada de Cu en los residuos mineros y baja en el suelo
y en ambos tipos de estiércol. En los tratamientos con mayor aplicación de estiércol de cerdo se presentó una disminución
de la concentración del Cu soluble-intercambiable y un aumento de la concentración del Cu fuertemente unida a la fracción
orgánica. Mientras que con el de vaca se registraron concentraciones más elevadas del Cu soluble-intercambiable y el
incremento de la fracción del Cu débilmente unida a la fracción orgánica.
REFERENCIAS (EN ESTE ARTÍCULO)
Abollino, O., Aceto, M., Malandrino, M., Mentaste, E., Sarzanini, C. & Barberis, R. (2002). Distribution and Mobility of Metals in Contaminated Sites. Chemometric Investigation of Pollutant Profiles. Environmental Pollution, 119, 177–193. DOI: 10.1016/s0269- 7491(01)00333-5.
Acosta, J., Jansen, B., Kalbitz, K., Faz, A. & Martínez- Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85, 1318–1324. DOI: 10.1016/j.chemosphere.2011.07.046.
Ahumada, I., Mendoza, J., Navarrete, E. & Ascar, L. (1999). Sequential extraction of heavy metals in soil irrigated with waste water. Communications in Soil Science and Plant Analysis, 30, 1507–1519. https://doi.org/10.1080/00103629909370303
Albanell, E., Plaixats, J., Cabrero, T. & Capellas. M. (1988). Composición química del estiércol de vaca fresco y maduro durante el vermicompostaje. BIOLOGÍA AMBIENTAL Actas del Congreso de Biología Ambiental tomo: II. II CONGRESO MUNDIAL VASCO.
Alloway, B. J. & Trevors, J. T. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability: Dordrecht, Springer, 613 p.
Bloomfield, C. (1981). The translocation of metals in soils. In: D.J. Greenland and M.H.B. Hayes (editors) The Chemistry of Soil Processes. John Wiley & Sons Ltd, Chichester.
Campos, T., Chaer, G., Leles, P., Silva, M. & Santos, F. (2019). Leaching of Heavy Metals in Soils Conditioned with Biosolids from Sewage Sludge. Floresta e Ambiente, 26, 2–10. https://doi.org/10.1590/2179-8087.039918
Caporale, A. & Violante, A. (2016). Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Current Pollution Reports, 2, 15–27. DOI: 10.1007/s40726-015-0024-y
Clemente, R. & Bernal, M. P. (2006). Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64, 1264–1273. DOI: 10.1016/j. chemosphere.2005.12.058
Concas, A., Montinaro, S., Pisu, M. & Cao, G. (2007). Mechanochemical remediation of heavy metals contaminated soils: Modelling and experiments. Chemical Engineering Science, 62 (18.20), 5186–5192. https://doi. org/10.1016/j.ces.2007.02.024
Davutluoglu, O. I., Seckin, G., Ersu, C. B., Yilmaz, T. & Sari, B. (2011). Heavy metal content and distribution in surface sediments of the Seyhan River, Turkey. Journal of Environmental Management, 92, 2250–2259. DOI: http:// dx.doi.org/10.1016/j.jenvman.2011.04.013.
Duarte, V. M., Gutiérrez E. V., Gutiérrez M. C., Carrillo- González, R., Ortiz, C. A. & Trinidad, A. (2015) Heavy metals contamination in soils around tailing heaps with various degrees of weathering in Zimapán, Mexico, International Journal of Environmental Studies, 72(1), 24–40, DOI: 10.1080/00207233.2014.961310
Duarte, V. M., Carrillo-González, R., Lozano, M. L. & Carrasco, V. (2019). Fractionation of Heavy Metals in Mine Tailings Amended with Composted Manure. Soil and Sediment Contamination: An International Journal, 28(2), 148–161, DOI: 10.1080/15320383.2018.1553931
Farrell, M., Perkins, W., Hobbs, P. J., Griffith, G. W. & Jones D. L. (2010). Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 158, 55–64. DOI: 10.1016/j.envpol.2009.08.027
Gee, G. W. & Bauder, J. W. (1986). Particle size analysis. In Klute, A. (ed.) Methods of soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy Monography 9. ASA and SSSA, Madison, WI. Pp. 404– 407.
Gleyzes, C., Tellier, S. & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451–467. DOI: 10.1016/S0165-9936(02)00603-9
He, Z. L., Yanga, X. E. & Soffellab, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Review. Journal of Trace Elements in Medicine and Biology, 19, 125–140. DOI: 10.1016/j.jtemb.2005.02.010
Higueras, P. & Oyarzun, R. (2002). Curso de Minería y Medio Ambiente Medio ambiente Minero. [Online] Previa.uclm. es. Available at: https://previa.uclm.es/users/higueras/ mam/ [Accessed 23 Nov. 2019].
Hund-Rinke, K. & Koerdel, W. (2003). Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicology and Environmental Safety, 56, 52–62
Jiang, M, Zeng, G, Zhang, C, Ma, X, Chen, M, Zhang, J., Lu, L., Yu, Q., Hu, L. & Liu, L. (2013). Assessment of Heavy Metal Contamination in the Surrounding Soils and Surface Sediments in Xiawangang River, Qingshuitang District. PLoS ONE, 8(8), e71176. DOI: 10.1371/journal. pone.0071176
Nelson, D. W. & Sommers, L. E. (1982). Total carbon and organic matter. In: Woodwell, G.M. (ed.) Methods of soil Analysis Part 3- Chemical Methods. Soil Science Society of America, 5, 961–1010.
Pagnanelli, F., Mosca, E., Giuliano, V. & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area; pollution detection and affinity series. Environmental Pollution, 132, 189– 201. DOI: 10.1016/j.envpol.2004.05.002
Palmer, R. G. (1979). Manual de laboratorio. Libros y editoriales S.A. México, D. F. 158 p.
Rieuwerts, J. S. Thornton, I. Farago M. E. & Ashmore M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61–75.
Rodríguez, L., Ruiz, E., Alonso-Azcárate, J. & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. Journal of Environmental Management, 90(2), 1106- –1116. https://doi.org/10.1016/j.jenvman.2008.04.007
Rog-Young K., Jeong-Ki, Y., Tae-Seung K., Jae, Y., Gary, O. & Kwon-Rae, K. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environmental Geochemical and Health, 37, X-X. DOI: 10.1007/s10653-015-9695-y
Rowell, D. L. (1994). Soil Science: Methods and Applications, Longman, Harlow.
Shi, W., Lu, C, He, J., En, H., Gao, M., Zhao, B., Zhou, B., Zhou, H., Liu, H. & Zhang, Y. (2018). Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals. Ecotoxicology Environmental Safety, 154(15), 59–68. https://doi. org/10.1016/j.ecoenv.2018.02.013 PMID: 29454987
Sparks, D. L. (2002). Environmental soil chemistry. 2nd ed. San Diego: Academic.
Sungur, A., Soylak, M., Yilmaz, S. & Ozca, H. (2016). Heavy metal mobility and potential availability in animal manure: using a sequential extraction procedure. Journal of Material Cycles and Waste Management, 18, 563–572. DOI: 10.1007/s10163-015-0352-4
Tembo, B. D., Sichilongo, K. & Cernak, J. (2006). Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere. 63, 497– 501. DOI: 10.1016/j.chemosphere.2005.08.002
USEPA (U.S. Enviromental Protection Agency). (1996). Soil Screening Guidance. Technical Background. Document. U.S. Gov. Print. Office, Washington, D. C. USEPA Rep.504/R-95/128.
Usman, A. R., Kuzyakov, Y. & Stahr, K. (2005). Effect of Immobilizing Substances and Salinity on Heavy Metals Availability to Wheat Grown on Sewage Sludge- Contaminated Soil. Soil & Sediment Contamination, 14, 329–344
Vega, F. A., Covelo, E. F. & Andrade, M. L. (2006). Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science, 298, 582–592.
Wiatrowska, K. & Komisarek, J. (2019). Role of the light fraction of soil organic matter in trace elements binding. PLoS ONE, 14(5), e0217077. https://doi.org/10.1371/ journal.pone.0217077
Zeien, H. & Bruemmer, G. W. (1989). Chemical extractions to identify heavy metal binding forms in soils. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505– 510
Zhou T., Wu L., Luo Y. & Christie P. (2018). Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soil. Environmental Pollution, 232, 514–522. https://doi. org/10.1016/j.envpol.2017.09.081 P