2021, Number 4
<< Back Next >>
Rev Educ Bioquimica 2021; 40 (4)
El síndrome metabólico y sus efectos en la función y dinámica de las mitocondrias del corazón
García SBY, Rueda SVA
Language: Spanish
References: 69
Page: 189-203
PDF size: 411.31 Kb.
ABSTRACT
The metabolic syndrome (MetS) encompasses a set of physiological and biochemical alterations
that according to the International Diabetes Federation is diagnosed by the presence of
central obesity plus any two of the following criteria: 1) dysglycemia, 2) hypertriglyceridemia,
3) decreased levels of high-density lipoprotein cholesterol (or cHDL), and 4) hypertension,
which are considered risk factors for the development of type 2 diabetes mellitus (DM2) and
cardiovascular disease (CVDs). MS has a high incidence in Mexico; however, no recent studies
exist about the cardiovascular alterations that MetS causes in the Mexican population. MetS
is associated with an increase in sympathetic stimulation, which augments heart rate in resting
conditions; and limits the response of the cardiovascular system to stress or increased
physical activity. It has also been observed that MetS patients develop vasculopathies; and
in young people MetS triggers the development of cardiac hypertrophy; nevertheless, there
is still a lack of data about the effect of MetS risk factors in the myocardium and specifically
in mitochondrial function. In this review, we summarized recent results about the about the
alterations in function, mitochondrial enzyme expression, and mitochondrial dynamics in the
heart under conditions of obesity, hypertension and dyslipidemias identified in MetS, and we
also analyze novel therapeutic strategies to recover mitochondrial function. However, few
studies have been published about alterations in function and mitochondria dynamics in the
heart under MetS condition; therefore, more research is still needed.
REFERENCES
Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988; 37(12): 1595-607.
Lakka HM. Laaksonen DE. Lakka TA. Niskanen LK. Kumpusalo E. Tuomilehto J. Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middleaged men. Jama. 2002; 288(21): 2709-16.
Chen J. Muntner P. Hamm LL. Jones DW. Batuman V. Fonseca V. Whelton PK. He J. The metabolic syndrome and chronic kidney disease in US adults. Annals of Internal Medicine. 2004; 140(3):167-74.
Marchesini G. Bugianesi E. Forlani G. Cerrelli F. Lenzi M. Manini R. Natale S. Vanni E. Villanova N. Melchionda N. Rizzetto M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003; (4):917-23.
Gutiérrez A. Datta S. Méndez R. Prevalence of metabolic syndrome in Mexico: A systematic review and meta-analysis, Metabolic Syndrome and Related Disorders. 2018; 16(8):395-405.
Ferrari R. Cargnoni A. Ceconi C. Anti-ischaemic effect of ivabradine. Pharmacological Research. 2006; 53(5):435-9.
Kolwicz Jr. Purohit S. Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research. 2013; 113(5):603-16.
Bereiter J. Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microscopy Research and Technique. 199; 27(3):198-219.
Bertrand L. Horman S. Beauloye C . Vanoverschelde JL. Insulin signalling in the heart. Cardiovascular Research. 2008;79(2):238-48.
Hamilton S. Terentyeva R. Clements RT. Belevych AE. Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. Journal of Molecular and Cellular Cardiology. 2021; (156): 105-13.
Forte M. Schirone L. Ameri P. Basso C. Catalucci D. Modica J. The role of mitochondrial dynamics in cardiovascular diseases. British journal of pharmacology. 2021; 178(10): 2060-2076.
Alberti M. Zimmet P. Shaw J. Metabolic syndrome—a new world‐wide definition. A consensus statement from the international diabetes federation. Diabetic medicine 2006; 23(5), 469-480.
Dommermuth R. EwingK. Metabolic syndrome: systems thinking in heart disease. Primary Care: Clinics in Office Practice. 2018; 45(1):109-29.
Eckel RH. Grundy SM. Zimmet PZ. The metabolic syndrome. The Lancet. 2005; 365(9468):1415-28.
Romero M. Shamah T. Vielma E. Heredia O. Mojica J. Cuevas L. Rivera J. Encuesta Nacional de Salud y Nutrición 2018-19: metodología y perspectivas. Salud Pública de México. 2019; 61:917-23.
Rtveladze K. Marsh T. Barquera S. Romero LM. Levy D. Melendez G. Webber L. Kilpi F. McPherson K, Brown M. Obesity prevalence in Mexico: impact on health and economic burden. Public health nutrition. 2014;17(1):233-9.
Carvajal K, El Hafidi M, Baños G. Myocardial damage due to ischemia and reperfusion in hypertriglyceridemic and hypertensive rats: participation of free radicals and calcium overload. Journal of hypertension. 1999;17(11):1607-16.
Carvajal K. El Hafidi M. Marin A. Moreno R. Structural and functional changes in heart mitochondria from sucrose-fed hypertriglyceridemic rats. Biochimica et Biophysica Acta (BBA). 2005;1709(3): 231-9.
Xue RQ. Yu XJ. Zhao M. Xu M. Wu Q. Cui YL. Yang S. Li DL. Zang WJ. Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome. Free Radical Biology and Medicine. 2019; 134: 119-32.
Liu L. Huang X. Gao J. Guo Y. Di Y. Sun S. Deng X. Cao J. Improved endogenous epoxyeicosa trienoicacid production mends heart function via increased PGC 1α-mitochondrial functions in metabolic syndrome. Journal of Pharmacological Sciences. 2018;138(2):138-45.
Mottillo S. Filion KB. Genest J. Joseph L. Pilote L. Poirier P. Rinfret S. Schiffrin EL. Eisenberg MJ. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;56(14):1113-32.
Deen JF. Krieger EV. Slee AE. Arslan A. Arterburn D. Stout KK. Portman MA. Metabolic syndrome in adults with congenital heart disease. Journal of the American Heart Association. 2016; 5(2): e001132.
Sandler H. Dodge HT. Left ventricular tension and stress in man. Circulation Research. 1963;13(2): 91-104.
Hood Jr WP. Rackley CE. Rolett EL. Wall stress in the normal and hypertrophied human left ventricle. The American Journal of Cardiology. 1968;22(4):550-8.
Burchfield JS. Xie M. Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388-400.
Poirier P. Giles TD. Bray GA. Hong Y. Stern JS. Pi-Sunyer FX. Eckel RH. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898- 918.
Piepoli MF. Corrà U. Veglia F. Bonomi A. Salvioni E. Cattadori G. Metra M. Lombardi C. Sinagra G. Limongelli G. Raimondo R. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group. European Journal of Heart Failure. 2016;18(5): 545-53.
Alpert M A. Obesity cardiomyo p a t hy : pathophysiology and evolution of the clinical syndrome. The American Journal of the Medical Sciences. 2001;321(4): 225-36.
Helkin A. Stein JJ. Lin S. Siddiqui S. Maier KG. Gahtan V. Dyslipidemia part 1—review of lipid metabolism and vascular cell physiology. Vascular and Endovascular Surgery. 2016;50(2): 107-18.
Barter P. Kastelein J. Nunn A. Hobbs R. Board FF. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis. 2003;168(2):195-211.
Jeffrey FM. Diczku V. Sherry AD. Malloy CR. Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic Research in Cardiology. 1995;90(5): 388-96.
McNulty PH. Jacob R. Deckelbaum LI. Young LH. Effect of hyperinsulinemia on myocardial amino acid uptake in patients with coronary artery disease. Metabolism. 2000;49(10):1365-9.
Wentz AE. d’Avignon DA. Weber ML. Cotter DG. Doherty JM. Kerns R. Nagarajan R. Reddy N. Sambandam N. Crawford PA. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J Biol Chem. 2010;285(32):24447-56.
DeLuca HF. Engstrom GW. Calcium uptake by rat kidney mitochondria. PNAS. 196; 47(11):1744.
Baughman JM, Perocchi F. Girgis HS. Plovanich M. Belcher-Timme CA. Sancak Y. Bao XR. Strittmatter L. Goldberger O. Bogorad RL. Koteliansky V. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476(7360): 341-5.
Bartolomé F. Abramov AY. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Mitochondrial Medicine 2015; 1264:263-270.
Carafoli E. The interplay of mitochondria with calcium: an historical appraisal. Cell Calcium 2012; 52(1): 1-8.
Belosludtsev KN. Dubinin MV. Belosludtseva NV. Mironova GD. Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry (Moscow). 2019; 84(6): 593-607.
Brookes P. Yoon Y. Robotham J. Anders M. Sheu S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology 2004; 287(4): C817-C833.
Palmer JW. Tandler B. Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. Journal of Biological Chemistry. 1977; 252(23): 8731-9.
Riva A. Tandler B. Loffredo F. Vazquez E. Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. American Journal of Physiology-Heart and Circulatory Physiology. 2005; 289(2):H868-72.
Glancy B. Kim Y. Katti P. Willingham T. (2020). The functional impact of mitochondrial structure across subcellular scales. Frontiers in Physiology, 11.
Twig G. Elorza A. Molina AJ. Mohamed H. Wikstrom JD. Walzer G. Stiles L. Haigh SE. Katz S. Las G. Alroy J. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal. 2008; 27(2):433-46.
Olichon A. Emorine LJ. Descoins E. Pelloquin L. Brichese L. Gas N. Guillou E. Delettre C. Valette A. Hamel CP. Ducommun B. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS letters. 2002; 523(1-3):171-6.
Vásquez-Trincado C. García-Carvajal I. Pennanen C. Parra V. Hill JA. Rothermel BA. Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. The Journal of Physiology. 2016; 594(3): 509-25
Ploumi C. Daskalaki I. Tavernarakis N. Mitochondrial biogenesis and clearance: abalancingact. The FEBS Journal. 2017;284(2):183-95.
Fan W. Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Current Opinion in Cell Biology. 2015; 33:49- 54.
Gottlieb RA. Piplani H. Sin J. Sawaged S. Hamid SM. Taylor DJ. de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cellular and Molecular Life Sciences. 2021;(5): 1-1.
Eirin A, Lerman A. Lerman LO. Mitochondria: a pathogenic paradigm in hypertensive renal disease. Hypertension. 2015;65(2): 264-70.
Power AS. Pham T. Loiselle DS. Crossman DH. Ward ML. Hickey AJ. Impaired ADP channeling to mitochondria and elevated reactive oxygen species in hypertensive hearts. American Journal of Physiology-Heart and Circulatory Physiology. 2016; 310(11): H1649-57.
Moreira PI. Alzheimer’s disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis. 2012;30 Suppl 2: S199-215.
Aksu U. Demirci C. Ince C. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib Nephrol. 2011;174: 119-128.
Ruiz-Ramírez. A. Barrios-Maya. M. Quezada- Pablo. H. López-Acosta O. El-Hafidi. M. Kidney dysfunction induced by a sucrose-rich diet in rat involves mitochondria ROS generation, cardiolipin changes, and the decline of autophagy protein markers. American Journal of Physiology-Renal Physiology. 2020; 318(1): F53-F66.
Lee MY. Griendling KK. Redox signaling, vascular function, and hypertension. Antioxidants & Redox Signaling. 2008; 10(6):1045-59.
Ruiz-Ramírez. A. Barrios-Maya. M. A. López-Acosta. O. Molina-Ortiz. D. El-Hafidi M. Cytochrome c release from rat liver mitochondria is compromised by increased saturated cardiolipin species induced by sucrose feeding. American Journal of Physiology-Endocrinology and Metabolism. 2015; 309(9): E777-E786.
Furukawa. S. Fujita. T. Shimabukur. M. Iwaki. M. Yamada. Y. Nakajima. Y. Shimomura. I. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation. 2017; 114(12): 1752- 1761.
Rimbaud S. Ruiz, M. Piquereau J. Mateo P. Fortin D. Veksler V. Ventura-Clapier. R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. American Journal of Physiology-Heart and Circulatory Physiology. 2011; 6(10): e26391.
Ordog K. Horvath O. Eros K. Bruszt K. Toth S. Kovacs D. Kalman N. Radnai B. Deres L. Gallyas Jr F. Toth K. Mitochondrial protective effects of PARP-inhibition in hypertensioninduced myocardial remodeling and in stressed cardiomyocytes. Life Sciences. 2021; 268: 118936.
Rocha LA. Oliveira KS. Migliolo L. Franco OL. Effect of moderate exercise on mitochondrial proteome in heart tissue of spontaneous hypertensive rats. American Journal of Hypertension. 2016; 29(6): 696-704.
Hickey AJ. Chai CC. Choong SY. de Freitas Costa S. Skea GL. Phillips AR. Cooper GJ. Impaired ATP turnover and ADP supply depress cardiac mitochondrial respiration and elevate superoxide in nonfailing spontaneously hypertensive rat hearts. American Journal of Physiology-Cell Physiology. 2009; 297(3): C766-74.
Dikalova AE. Itani HA. Nazarewicz RR. McMaster WG. Flynn CR. Uzhachenko R. Fessel JP. Gamboa JL. Harrison DG. Dikalov SI. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circulation Research. 2017; 121(5): 564-74.
Ziegelhöffer A. Mujkošová J. Ferko M. Vrbjar N. Ravingerová T. Uličná O. Waczulíková I. Ziegelhöffer B. Dual influence of spontaneous hypertension on membrane properties and ATP production in heart and kidney mitochondria in rat: effect of captopril and nifedipine, adaptation and dysadaptation. Canadian Journal of Physiology and Pharmacology. 2012; 90(9): 1311-23.
Atlante AN. Seccia TM. Pierro PA. Vulpis VI. Marra E. Pirrelli A. Passarella S. ATP synthesis and export in heart left ventricle mitochondria from spontaneously hypertensive rat. International Journal of Molecular Medicine. 1998; 1(4): 709-25.
Ruan XH. Ma T. Fan Y. Ablation of TMEM126B protects against heart injury via improving mitochondrial function in high fat diet (HFD)- induced mice. Biochemical and Biophysical Research Communications. 2019; 515(4): 636-43.
Lu Y. Lu X, Wang L. Yang W. Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-α. European Journal of Pharmacology. 2019; (843): 88-95.
Li SJ. Wu TW. Chien MJ. Mersmann HJ. Chen CY. Involvement of pericardial adipose tissue in cardiac fibrosis of dietary-induced obese minipigs—Role of mitochondrial function. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019;1864(7):957- 65.
Chen D. Li X. Zhang L. Zhu M. Gao L. A highfat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. Journal of Cellular Biochemistry. 2018;119(11): 9602.
Wang Y. Jin P. Liu J. Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clinical Science. 2019;133(17):1871-81.
Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. The journal of clinical endocrinology & metabolism. 2004; 89(6): 2601-2607.