2021, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2021; 40 (4)
Levaduras degradadoras de hidrocarburos aromáticos policíclicos
Padilla-Garfias F, Sánchez NS, Calahorra M, Peña A
Idioma: Español
Referencias bibliográficas: 47
Paginas: 178-188
Archivo PDF: 585.35 Kb.
RESUMEN
La contaminación del medio ambiente con hidrocarburos aromáticos policíclicos
(HAPs) ha aumentado en los últimos años, lo que ha fomentado el estudio de sus
posibles efectos en el medio ambiente y la salud. La micorremediación ha surgido
como un tema de interés, donde hongos como las levaduras puedan ser utilizados
en la remediación del ambiente.
REFERENCIAS (EN ESTE ARTÍCULO)
Soucek P. (2011) Xenobiotics. En: Schwab M. Editor: Encyclopedia of Cancer. Springer, Berlin, Heidelberg, pp 3963-3972.
Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8.
Agency for Toxic Substances and Disease Registry [ATSDR] (2016) Toxicological profile for polycyclic aromatic hydrocarbons. Acenaphthene, Acenaphthylene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g,i,h]perylene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h] anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-c,d]pyrene, Phenanthrene, Pyrene. Atlanta, GA: Agency for Toxic Substances and Disease Registry. https:// www.atsdr.cdc.gov/toxprofiles/tp69.pdf
Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 7:1369.
Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15.
Ortiz-Salinas R, Cram S, Sommer I (2012) Hidrocarburos aromáticos policíclicos (HAPs) en suelos de la llanura aluvial baja del estado de Tabasco, México. Universidad y Ciencia 28(2):131-144.
Díaz G, Gutiérrez R, Pérez N, Vega S, Ramírez A, Prado G (2001) Las sustancias tóxicas persistentes. Creatividad y quehacer científico en la UAM-Xochimilco, CDMX, México, pp. 355- 366.
Cram S, Ortiz R, Paéz R (2001) Hidrocarburos aromáticos policíclicos. INE-SEMARNAT, México, pp 173-199.
Srivastava S, Kumar M (2019) Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Sustainable Approach. En: Sustainable Green Technologies for Environmental Management. Editor: Shah, S. Singapore. Springer Nature, pp 111-139.
Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620-628.
Stamets P (1999) Earth’s Natural Internet. Whole Earth Magazine 1:74-77.
Ide-Pérez MR, Fernández-López MG, Sánchez- Reyes A, Leija A, Batista-García RA, Folch- Mallol JL, Sánchez-Carbente M (2020). Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula spp. from an Oil Polluted Site in Mexico. J. Fungi 6(3):135.
Yaguchi A, Franaszek N, O’Neill K, Lee S, Sitepu I, Boundy-Mills K, Blenner M (2020) Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol 47:801–813.
Moore BG, Harrison AP (1965) Benzo[a]pyrene uptake by bacteria and yeast. J Bacteriol 90(4):989–1000.
Dehnen W, Tomingas R, Roos J (1973) A modified method for the assay of benzo(a) pyrene hydroxylase. Anal Biochem 53(2):373– 383.
Wiseman A, Lim TK, Woods LF (1978). Regulation of the biosynthesis of cytochrome P-450 in brewer’s yeast. Role of cyclic AMP. Biochim Biophys Acta 544(3):615–623.
Wiseman A, Woods LF (1979) Benzo(a)pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J Chem Technol Biotechnol 29:320-324
Woods LF, Wiseman A (1980) Benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Substrate binding, spectral and kinetic data. Biochim Biophys Acta 613(1):52-61.
Cerniglia C, Crow S (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch Microbiol 129:9-13.
Azari MR, Wiseman A (1982) Purification and characterization of the cytochrome P-448 component of a benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Anal Biochem 122(1):129–138.
Azari MR, Wiseman A (1982) Evaluation of immobilized cytochrome P-448 from Saccharomyces cerevisiae using permeabilized whole cel l , microsomal f ract ion and highly purified reconstituted forms, with benzopyrene-3-monooxygenase activity. Enzyme Microb Technol 4:401–404.
MacGi l l ivray AR, Shiar is MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59(5):1613– 1618.
Hesham AE, Wang Z, Zhang Y, Zhang J, Lv W, Yang M (2006) Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol 56:109-112.
Hesham AE, Alamri S, Khan S, Mahmoud M, & Mahmoud H (2009) Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. Afr J Biotechnol 8(10):2218–2223.
Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-tofunction characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399(4):492–497.
O’Connor ST, Lan J, North M, Loguinov A, Zhang L, Smith MT, Gu AZ, Vulpe C (2013) Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front Genet 3:316.
Mandal S, Selvi A, Das N (2016) A novel approach on degradation of benzo[a]pyrene by yeast consortium isolated from contaminated soil. Der Pharmacia Lettre 8:80-93.
Mandal S, Ojhab N, Das N (2018) Optimization of process parameters for the yeast mediated degradation of benzo[a]pyrene in presence of ZnO nanoparticles and produced biosurfactant using 3-level Box-Behnken design. Ecol Eng 120:497-503.
Martínez-Ávila L, Peidro-Guzmán H, Pérez- Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, Gunde-Cimerman N, Batista-García RA (2021) Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. Environ Pollut 271:116358.
Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb biotechnol 6(3):248–263.
Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549.
Daccò C, Girometta C, Micheal-Dare A, Carpani G, Picco A, Tosi S (2020) Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int Biodeterior Biodegradation 147:104866.
Tortella G, Durán N, Rubilar O, Parada M, Diez MC (2015) Are white-rot fungi a real biotechnological option for the improvement of environmental health? Crit Rev Biotechnol 35:165-172.
Wang S, Nomura N, Nakajima T, Uchiyama H (2012) Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng 113:624-630.
Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci 51:52-74.
Durairaj P, Hur JS, Yun H (2016) Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact 15(1):125.
Cerniglia CE, Sutherland JB (2010) Degradation of Polycyclic Aromatic Hydrocarbons by Fungi. En: Handbook of Hydrocarbon and Lipid Microbiology. Editor: Timmis KN. Springer, Berlin, Heidelberg, pp 2080–2110.
Capotorti G, Cesti P, Lombardi A, Guglielmetti G (2005) Formation of sulfate conjugates metabolites in the degradation of phenanthrene, anthracene, pyrene and benzo[a]pyrene by the ascomycete Aspergillus terreus. Polycycl Aromat Comp 25:197-213.
Yang Q, Zhang H, Li X, Wang Z, Xu Y, Ren S, Chen X, Xu Y, Hao H, Wang H (2013) Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresour Technol 129:264-273.
Bonola-Gallardo I, Irigoyen-Camacho M, Robles L, Celis A, Hamdan Aida (2014) Estrés oxidante: el sistema enzimático glutatión y la salud bucal. Ciencias Clínicas 15:2-8.
Verdin A, Lounes-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133:283-291.
Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munch J, Rafin C (2014) Energy-dependent uptake of benzo[a]pyrene and its cytoskeletondependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut R 21:3515-3523.
Capotorti G, Cesti P, Lombardi A, Guglielmetti G (2005) Formation of sulfate conjugates metabolites in the degradation of phenanthrene, anthracene, pyrene and benzo[a]pyrene by the ascomycete Aspergillus terreus. Polycycl Aromat Comp 25:197-213.
Schmidt SN, Christensen JH, Johnsen AR (2010) Fungal PAH-metabolites resist mineralization by soil microorganisms. Environ Sci Technol 44:1677-1682.
Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45-49.
Debruyn JM, Sayler GS (2009) Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated creek. Environ Sci Technol 43:3047–3053.
Mishamandani S, Gutierrez T, Aitken MD (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76.