2021, Number 2
<< Back Next >>
Rev Hematol Mex 2021; 22 (2)
Mutations in CALR gene and its role in the diagnosis and prognosis of chronic myeloproliferative neoplasms
Morales-Herrejón R, Pérez-Contreras VA, Cortés-Penagos C
Language: Spanish
References: 31
Page: 88-96
PDF size: 269.60 Kb.
ABSTRACT
Myeloproliferative neoplasms represent a broad group of genetic disorders characterized
by the presence of JAK2 and MPL mutations. Discovery of somatic mutations
in calreticulin gene (
CALR) in essential thrombocythemia and primary myelofibrosis
open up the possibility to include a new molecular marker to increase the diagnostic
accuracy for these neoplasms. This paper describes the mutation profile of
CALR and
the relationship with the origin and prognosis impact of myeloproliferative neoplasms.
All mutations in calreticulin gene (
CALR) associated with myeloproliferative neoplasms
occurs on exon 9. These mutations, classified as insertions and deletions, generate a
new C-terminal amino acid sequence. Deletion of 52-bp (type 1 mutation) and insertion
of 5-bp (type 2 mutation) are found in 80-90% of all reported cases. C-terminal
modifications are suggested to drive the oncogenic pathway. The presence of mutations
in calreticulin gene (
CALR) have been related to clinical distinctive characteristics and
good prognosis.
CALR mutations appear early in myeloproliferative neoplasms and
could potentially be used as transformation marker.
REFERENCES
Campo E, Swerdlow SH, Harris NL, Pileri S, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117 (19): 5019-5032. doi. 10.1182/ blood-2011-01-293050.
Kralovics R, Passamonti F, Buser AS, Teo SS, et al. A gain-offunction mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352 (17): 1779-1790. doi. 10.1056/ NEJMoa051113.
Tefferi A, Pardanani A. Myeloproliferative neoplasms. A contemporary review. JAMA Oncology 2015; 1 (1): 97-105. doi. 10.1001/jamaoncol.2015.89.
Klampfl T, Gisslinger H, Harutyunyan A, Nivarthi H, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369 (25): 2379-2390. doi. 10.1056/NEJMoa1311347.
Jones A, Cross N, White H. Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica 2008; 93 (10): 1560-1564. doi. 10.3324/ haematol.12883.
Furtado LV, Weigelin HC, Elenitoba-Johnson KS, Betz BL. Detection of MPL mutations by a novel allele-specific PCRbased strategy. J Mol Diag 2013; 15 (6): 810-818. https:// doi.org/10.1016/j.jmoldx.2013.07.006.
Nangalia J, Massie C, Baxter E, Nice F, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369 (25): 2391-2405. doi. 10.1056/NEJMoa1312542.
Ostwald TJ, Maclennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 1974; 249 (3): 974-979.
Fliegel L, Burns K, MacLennan DH, Reithmeier RA, et al. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989; 264 (36): 21522-21528.
Michalak M, Milner RE, Burns K, Opas M. Calreticulin. Biochem J 1992; 285 (3): 681-692.
Smith M, Koch G. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 1989; 8 (12): 3581-3586.
Guglielmelli P, Nangalia J, Green A, Vannucchi A. CALR mutations in myeloproliferative neoplasms: hidden behind the reticulum. Am J Hematol 2014; 89 (5): 453-456. doi. 10.1002/ajh.23678.
Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymph 2014; 56 (6): 1593-1598. doi. 10.3109/10428194.2014.953153.
Greber UF, Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol 1995; 128 (1): 5-14. doi. 10.1083/jcb.128.1.5.
Barsh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 1991; 266 (32): 21458-21465.
Michalak M, Groenendyk J, Szabo E, Gold LL, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417 (3): 651-666. doi. 10.1042/BJ20081847.
Bedard K, Szabo E, Michalak M, Opas M. Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Inv Rev Cytol 2005; 245: 91-121. doi. 10.1016/ S0074-7696(05)45004-4.
Wenyi L, Zhongxin Y. Calreticulin (CALR) mutation in myeloproliferative neoplasms. Stem Cell Investig 2015; 2 (16): 1-10. doi. 10.3978/j.issn.2306-9759.2015.08.01.
Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 2014; 123 (24): 3714-3719. doi. 10.1182/blood-2014-03-530865.
Ji-Hun J, Hwan-Tae L, Ja-Young S, Yiel-Hea S, et al. Screening PCR versus sanger sequencing: detection of CALR mutations in patients with thrombocytosis. Ann Lab Med 2016; 36 (4): 291-299. doi. 10.3343/alm.2016.36.4.291.
Araki M, Komatsu N. Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms. Cancer Science 2017; 108 (10): 1907-1912. doi. 10.1111/cas.13327.
Chih-Cheng C, Jyh-Pyng G, Chou HJ, You JY, et al. Frequencies, clinical characteristics, and outcome of somatic CALR mutations in JAK2-unmutated essential thrombocythemia. Ann Hematol 2014; 93 (12): 2029-2036. doi. 10.1007/ s00277-014-2151-8.
Tefferi A, Wassie E, Guglielmelli P, Gangat N, et al. Type 1 vs type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027. Am J Hematol 2014; 89 (8):E121-124. doi. 10.1002/ajh.23743.
Rumi E, Pietra D, Ferrett V, Klampfl T, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014; 123 (10): 1544-1551. doi. 10.1182/ blood-2013-11-539098.
Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123 (10): 1552-1555. doi. 10.1182/ blood-2013-11-538983.
Guglielmelli P, Rotunno G, Fanelli T, Pacilli A, et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J 2015; 5 (10): 1-5. doi. 10.1038/bcj.2015.90.
Shih A, Abdel-Wahab O, Patel J, Levine R. The role of mutations in epigenetic regulators in myeloid malignancies. Nature Reviews Cancer 2012; 12 (9): 599-612. doi. 10.1038/nrc3343.
Rumi E, Pietra D, Pascutto C, Guglielmelli P, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124 (7): 1062-1069. doi. 10.1182/blood-2014-05-578435.
Shivarov V, Ivanova M, Tiu R. Mutated calreticulin retains structurally disordered C terminus that cannot bind Ca2þ: some mechanistic and therapeutic implications. Blood Cancer J 2014; 4 (2): 185-190. doi. 10.1038/bcj.2014.7.
Mondet J, Park JH, Menard A, Marzac C, et al. Endogenous megakaryocytic colonies underline association between megakaryocytes and calreticulin mutations in essential thrombocythemia. Haematologica 2015; 100 (5): 1176- 1178. doi. 10.3324/haematol.2014.118927.
Araki M, Yang Y, Masubuchi N, Hironaka Y, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016; 127 (10): 1307-1316. doi. 10.1182/blood-2015-09-671172.