2020, Number 3
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (3)
Frequency of molecular disorders in Cuban patients with acute myeloid leukemia
Amor VAM, Hernández MLL, Díaz ACA, Ruiz MV, Fernández ML, Oliva HI, Garrote SH
Language: Spanish
References: 58
Page:
PDF size: 499.19 Kb.
ABSTRACT
Introduction:
At the Institute of Hematology and Immunology, the molecular study of acute myeloid leukemias (AML) is carried out. For nonpromyelocytic acute myeloid leukemias, four biomarkers are determined: the RUNX1-RUNX1T1 and CBF(-MYH11 fusion genes, the internal tandem duplication of the FLT3 gene (DIT FLT3), and the “A” mutation of the NPM1 gene (NPM1-A).
Objective:
To determine the frequency of these four biomarkers in Cuban patients with nonpromyelocytic primary acute myeloid leukemias.
Methods:
91 patients were included, children and adults, who were studied at the Institute for three years from their disease debut. Complementary DNA was obtained from medullary blood RNA by reverse transcription. The corresponding fragments were amplified by polymerase chain reaction and the product was analyzed by capillary electrophoresis.
Results:
RUNX1-RUNX1T1 appeared in 24.2%; it was more frequent in pediatric patients and decreased significantly with age. CBFβ-MYH11 was found only in adults (4.8%). NPM1-A, accounting for 41%, represented the majority among adults. FLT3 DIT was observed in 21.6% and was not related to age. NPM1-A and DIT FLT3 were the disorders with the greatest concurrence.
Conclusions:
For the first time, the frequency of the four molecular biomarkers is described in Cuban patients with primary non-promyelocytic acute myeloid leukemias. Its characterization was similar to that described by other authors, although some peculiarities were found.
REFERENCES
De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441.
Mendez LM, Posey RR, Pandolfi PP. The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Front. Oncol. 2019;9:1162.
Damiani D, Tiribelli M. Molecular landscape in adult acute myeloid leukemia: where we are where we going? J Lab Precis Med. 2019;4:17.
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) cooperative group. Br J Haematol. 1976;33(4):451-8.
Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-302.
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al., The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937-51.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.
Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood. 2016;127(20):2451-9.
Sinha C, Cunningham LC, Liu PP. Core binding factor AML: New prognostic categories and therapeutic opportunities. Semin Hematol. 2015;52(3):215-22.
Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Bräundl K, et al. The clinical mutatome of core binding factor leukemia. Leukemia. 2020;34(6):1553-62.
Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia. Biomarker Res. 2018;6:32.
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299-312.
Muñoz D, Prada-Arismendy J, Castillo E. El Papel de FLT3 como Biomarcador en Leucemia Mieloide Aguda. Arch Med. 2018;14(1):1-9.
Yusoff YM, Seman ZA, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al. Identification of FLT3 and NPM1 Mutations in Patients with Acute Myeloid Leukaemia. Asian Pac J Cancer Prev. 2019;20(6):1749-55.
Cao T, Jiang N, Liao H, Shuai1 X, Su J, Zheng Q. The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia. Sci Rep. 2019;9:12209.
Wang M, Yang C, Zhang L, Schaar DG. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017(6962379):1-11.
Thiede C, Creutzig E, Reinhardt D, Ehninger G, Creutzig U. Different types of NPM1 mutations in children and adults: evidence for an effect of patient age on the prevalence of the TCTG-tandem duplication in NPM1-exon 12. Leukemia. 2007;21(2):366-7.
Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A, et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood. 2008;111(7):3859-62.
Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16(11):2185-9.
Ottone T, Ammatuna E, Lavorgna S, Noguera NI, Buccisano F, Venditti A, et al. An allele-specific RT-PCR assay to detect type A mutation of the nucleophosmin-1 gene in acute myeloid leukemia. J Mol Diag. 2008;10(3):212-6.
Garrote H, Lavaut-Sánchez K, Amor AM, Díaz C, Fernández L, Ruiz V, et al. Cinco décadas de la biología molecular y la citogenética aplicadas a la hematología cubana. Rev Cub Hematol Inmunol Hemoter. 2017;33(1):1-8.
Martínez G, Cayado N, Muñiz A, Espinosa E, Dorticós E, González A, et al. Diagnóstico molecular de la leucemia aguda promielocítica: resultados preliminares. Rev Cub Hematol Inmunol Hemoter. 2000;16(2):125-31.
Garrote H, Amor AM, Díaz CA, Suárez Y, Arencibia A. RUNX1-RUNX1T1: comportamiento en pacientes con leucemia mieloide aguda en nuestro medio. Rev Cub Hematol Inmunol Hemoter. 2015;31(4):417-25.
Garrote H, Amor AM, Díaz CA, Fernández L, Ruiz V, Machín S, et al. Caracterización del gen de fusión RUNX1-RUNX1T1 en pacientes cubanos con leucemia mieloide aguda, 2000-2016. Rev Cub Hematol Inmunol Hemoter. 2018;34(3):1-16.
Van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of BIOMED-1 Concerted Action. Leukemia. 1999;13(12):1901-28.
Liesveld JL, Lichtman MA. Acute myelogenous leukemia. En: Kaushansky K, Lichtman MA, Prchal JT, et al. , editores. Williams Manual of Hematology. 9th ed. United States of America: cGraw-Hill Education; 2016. p.1060-85.
Almeida AM, Ramos F. Acute myeloid leukemia in the older adults. Leukemia Res Rep. 2016;6:1-7.
Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al (eds). SEER Cancer Statistics Review, 1975-2017, National Cancer Institute. Bethesda, MD. [acceso 29/02/2020] Disponible en: Disponible en: https://seer.cancer.gov/csr/1975_2017/
Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Bräundl K, et al. The clinical mutatome of core binding factor leukemia. Leukemia. 2020;34:1553-62.
Sinha C, Cunningham LC, Liu PP. Core binding factor AML: New prognostic categories and therapeutic opportunities. Semin Hematol. 2015;52(3):215-22.
Schwaller J, Mercher T. Pediatric acute myeloid leukemia (AML): from genes to models towards targeted therapeutic intervention. Front Pediatr. 2019;7:401.
Reikvam H, Hatfield KJ, Kittang AO, Hovland R, Bruserud O. Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol. 2011;2011:104631.
Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, et al. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol. 2016;175(3):476-89.
Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-12.
Krauth MT, Eder C, Alpermann T, Bacher U, Nadarajah N, Kern W, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014;28(7):1449-58.
Kaushansky K, Lichtman MA, Prchal J, Levi MM, Press O, Burns L, et al. Acute Myelogenous Leukemia. In: William´s Hematology. 9th Ed. New York: Mc Graw-Hill; 2016.
Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586-95.
Vaskova J, Dubayova K, Cakanova G, Luckova I, Bochova I, Novotna G, et al. Incidence and Prognostic Value of Known Genetic Aberrations in Patients with Acute Myeloid Leukemia - a Two Year Study. Klin Onkol. 2015;28(4):278-83.
Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075-83.
Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group Study. Blood. 1997;89(9):3323-9.
Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1312-20.
Infante MS, Piris MA, Hernández-Rivas JA. Alteraciones moleculares en leucemia mieloide aguda y sus implicaciones clínicas y terapéuticas. Med Clin. 2018;151(9):362-7.
Blau O. Gene Mutations in Acute Myeloid Leukemia- Incidence, Prognostic Influence, and Association with Other Molecular Markers. Guenova M y Balatzenko G. eds. Leukemias-Updates and New Insights. Croatia: Intech Open; 2015. p.75-100.
Wang L, Lin D, Zhang X, Chena S, Wang M, Wang J. Analysis of FLT3 internal tandem duplication and D835 mutations in Chinese acute leukemia patients. Leuk Res. 2005;29(12):1393-8.
Auewarakul CU, Sritana N, Limwongse C, Thongnoppakhun W, Yenchitsomanus P. Mutations of the FLT3 gene in adult acute myeloid leukemia: determination of incidence and identification of a novel mutation in a Thai population. Cancer Gen Cytogen. 2005;162(2):127-34.
Burnatt G, Licínio MA, Gaspar PC, Ferreira AS, Reis ML, Rabello de Moraes AC, et al. Analysis of the presence of FLT3 gene mutation and association with prognostic factors in adult and pediatric acute leukemia patients. Braz J Pharm Sci. 2017;53(2):e16105.
Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475-86.
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-21.
Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymph. 2018;59(10):2273-86.
Meshinchi S, Stirewalt DL, Alonzo TA, Boggon TJ, Gerbing RB, Rocnik JL, et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood. 2008;111(10):4930-3.
Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Front Pediatr. 2019;7:401.
Wu, X, Feng X, Zhao X, Ma F, Liu N, Guo H, et al. Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies. Mol Cell Biochem. 2016;420:121-8.
Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematol Am Soc Hematol Educ Program. 2013;2013:220-6.
Conway O'Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014;2014(103175):1-15.
Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J, et al. Prognostic significance of NPM1 mutations in acute myeloid leukemia: A meta-analysis. Mol Clin Oncol. 2014;2(2):275-81.
Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66.
Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.
Paschka P, Du J, Schlenk RF, Gaidzik VI, Bullinger L, Corbacioglu A, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16):a study of the German-Austrian AML Study Group (AMLSG). Blood. 2013;121(1):170-7.