2020, Number 3
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (3)
Hereditary hemolytic anemias due to defective globin synthesis
Martínez-Sánchez LM, Castañeda PS
Language: Spanish
References: 51
Page:
PDF size: 804.36 Kb.
ABSTRACT
Introduction:
Genetic disorders in the hemoglobin molecule are divided into those that have a reduced rate of production of one or more globin chains, thalassemias; and those in which structural changes occur that lead to instability or abnormal oxygen transport.
Objective:
To explain the different mechanisms by which thalassemias and other alterations in the synthesis of globin chains occur, as well as molecular, physiopathogenic and hematological changes.
Methods:
A review of the literature in English and Spanish was carried out through the PubMed website and the Google Scholar search engine, searching for articles published in the last ten years. The revised bibliography was analyzed and summarized.
Information analysis and synthesis:
Thalassemias make up a heterogeneous group of genetic defects in the synthesis of hemoglobin, which causes a decrease in the rate of production of one or more chains of the molecule. According to the globin chain that presents the defect, they are divided into α-β-, δβ- or γδβ-thalassemias.
Conclusions:
Thalassemias and hemoglobinopathies are the most common hereditary hemolytic diseases in many parts of the world. They are characterized by complex interactions between anemia, ineffective erythropoiesis, and alterations in iron metabolism.
REFERENCES
Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79:704-12.
Sabath DE. Molecular Diagnosis of Thalassemias and Hemoglobinopathies: An ACLPS Critical Review. Am J ClinPathol. 2017;148(1):6-15.
Farashi S, Harteveld CL. Molecular basis of a-thalassemia. Blood Cells Mol Dis. 2018;70:43-53.
Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):193-211.
Chan WY, Leung AW, Luk CW, Li RC, Ling AS, Ha SY. Outcomes and morbidities of patients who survive haemoglobin Bart's hydropsfetalis syndrome: 20-year retrospective review. Hong Kong Med J. 2018;24(2):107-18.
Bhat VS, Dewan KK, Krishnaswamy PR. The Diagnosis of a-Thalassaemia: A Case of Hemoglobin H -a Deletion. Indian J ClinBiochem. 2010;25(4):435-40.
Risoluti R, Materazzi S, Sorrentino F, Bozzi C, Caprari P. Update on thalassemia diagnosis: New insights and methods. Talanta. 2018;183:216-22.
Yap ZM, Sun KM, Teo CR, Tan AS, Chong SS. Evidence of differential selection for the -a(3.7) and -a(4.2) single-a-globin gene deletions within the same population. Eur J Haematol. 2013;90(3):210-3.
He Y, Zhao Y, Lou JW, Liu YH, Li DZ. Fetal Anemia and Hydrops Fetalis Associated with Homozygous Hb Constant Spring (HBA2: c.427T?>?C). Hemoglobin. 2016;40(2):97-101.
Ang AL, Le TT, Tan RS. HbH Constant Spring disease has lower serum ferritin relative to liver iron concentration (LIC): importance of LIC measurement and potential impact on serum ferritin thresholds for iron chelation. Br J Haematol. 2017;176(6):986-8.
Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hem. 2016;38:32-40.
Songdej D, Babbs C, Higgs DR; BHFS International Consortium. An international registry of survivors with Hb Bart's hydropsfetalissyndrome. Blood. 2017;129(10):1251-9.
Aiken L, Linpower L, Tsitsikas DA, Win N. Hyperhaemolysis in a pregnant patient with HbH disease. Transfus Med. 2019;29(3):217-8.
Azma RZ, Ainoon O, Hafiza A, Azlin I, Noor Farisah AR, Nor Hidayati S, et al. Molecular characteristic of alpha thalassaemia among patients diagnosed in UKM Medical Centre. Malays J Pathol. 2014;36(1):27-32.
Cao J, He S, Pu Y, Liu J, Liu F, Feng J. Prenatal Diagnosis and Molecular Analysis of a Large Novel Deletion (- -JS) Causing a0-Thalassemia. Hemoglobin. 2017;41(4-6):243-7.
Au PK, Kan AS, Tang MH, Leung KY, Chan KY, Tang TW, et al. A Fetus with Hb Bart's Disease Due to Maternal UniparentalDisomy for Chromosome 16. Hemoglobin. 2016;40(1):66-9.
Schenkel LC, Kernohan KD, McBride A, Reina D, Hodge A, Ainsworth PJ, et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin. 2017;10:10.
Steensma DP, Porcher JC, Hanson CA, Lathrop CL, Hoyer JD, Lasho TA, et al. Prevalence of erythrocyte haemoglobin H inclusions in unselected patients with clonal myeloid disorders. Br J Haematol. 2007;139:439-42.
De Sanctis V, Kattamis C, Canatan D, Soliman AT, Elsedfy H, Karimi M, et al. ß-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.
Hoffbrand AV, Catovsky D, Tuddenham EGD, eds. Postgraduate Haematology. 5th ed. Oxford: Blackwell Publishing; 2005.
Origa R. ß-Thalassemia. Gen Med. 2017;19(6):609-19.
Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia.Lancet.2018; 391:155-67.
Salvatori F, Pappadà M, Breveglieri G, D'Aversa E, Finotti A, Lampronti I, et al. UPF1 silenced cellular model systems for screening of read-through agents active on ß039 thalassemia point mutation. BMC Biotechnol. May 2018;18(1):28.
Baker SL, Hogg JR. A system for coordinated analysis of translational read through and nonsense-mediated mRNA decay. PLoS One. 2017;12(3):e0173980.
Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med. 2018;24:11.
Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of the ß -thalassemias. Cold Spring Harb Perspect Med. 2012;2:a011726.
Wu HP, Lin CL, Chang YC, Wu KH, Lei RL, Peng CT, et al. Survival and complication rates in patients with thalassemia major in Taiwan. Pediatr Blood Cancer. 2017;64:135-8.
Vinciguerra M, Passarello C, Leto F,Crivello A, Fustaneo M, Cassarà et al. Coinheritance of a rare nucleotide substitution on the ß -globin gene and other known mutations in the globin clusters: management in genetic counseling. Hemoglobin. 2016;40(4):231-5.
Mettananda S, Higgs DR. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):177-91.
Asadov CD. Immunologic abnormalities in ß-thalassemia. J Blood Disord Transf. 2014;5(7):1000224.
Rund D. Thalassemia 2016: Modern medicine battles an ancient disease. Am J Hematol. 2016;91:15-21.
Aydinok Y, Porter JB, Piga A, Elalfy M, El-Beshlawy A, Kilinç Y, et al. Prevalence and distribution of iron overload in patients with transfusion-dependent anemias differs across geographic regions: results from the CORDELIA study. Eur J Haematol. 2015;95:244-53.
Vijay G Sankaran DGN, Orkin SH. Thalassemias. In: Orkin SH; Fisher DE; Ginsburg D; Look AT; Lux SE; Nathan DG (eds.) Nathan and Oski'sHematology and Oncology of Infancy and Childhood. 8th ed. Philadelphia: Elsevier Saunders; 2015. p.715-69.
Dessì C, Leoni G, Moi P, Danjoub F, Follesab I, Loreta M, et al. Thalassemia major between liver and heart: Where we are now. Blood Cells Mol Dis. 2015;55:82-8.
Maiti A, Chakraborti A, Chakraborty P, Mishra S. Subclinical haemorrhagic tendency exists in patients with b-thalassaemia major in early childhood. Australas Med J. 2012;5(2):152-5.
Sien Y, Yusoff A, Shahar S, Rajikan R. Bone health status among thalassemia children. Int J Public Health Res. 2014;4(1):399-404.
Giusti A, Pinto V, Forni GL, Pilotto A. Management of beta-thalassemia-associated osteoporosis. Ann NY Acad Sci. 2016; 1368(1):73-81.
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, et al. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci. 2014;15:10296-333.
Madhok S, Madhok S. Dental considerations in Thalassemic patients. J Dental Med Sci. 2014;13(6):57-62.
Khamphikham P, Sripichai O, Munkongdee T, Fucharoen S, Tongsima S, Smith DR. Genetic variation of Krüppel-like factor 1 (KLF1) and fetal hemoglobin (HbF) levels in ß0-thalassemia/HbE disease. IntJHematol. 2018;107(3):297-310.
Graffeo L, Vitrano A, Giambona A, Scondotto S, Dardanoni G, Gluud C, et al. The heterozygote state for ß-thalassemia detrimentally affects health outcomes. Am J Hematol. 2017;92:E23-5.
McGann PT, Nero AC, Ware RE. Clinical Features of ß-Thalassemia and Sickle Cell Disease. AdvExp Med Biol. 2017;1013:1-26.
Agapidou A, King P, Ng C, Tsitsikas DA. Double heterozygocity for hemoglobin C and beta thalassemia dominant: A rare case of thalassemia intermedia. Hematol Rep. 2017;9(4):7447.
Kumar MP, Prasad P, Ghosal T, Kumar PS, KantiDolai T. Predictors for Transfusion Requirement in Haemoglobin E-ß Thalassemia. Int J Med Public Health. 2017;7(1):28-32.
Traivaree C, Monsereenusorn C, Rujkijyanont P, Prasertsin W, Boonyawat B. Genotype-phenotype correlation among beta-thalassemia and beta-thalassemia/HbE disease in Thai children: predictable clinical spectrum using genotypic analysis. J Blood Med. 2018;9:35-41.
Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol. 2018;180:630-43.
Ottolenghi S, Giglioni B, Comi P, Gianni AM, Polli E, Acquaye CTA, et al. Globin gene deletion in HPFH, d°ß°thalassaemia and HbLepore disease. Nature.1979;278:654-7.
He S, Wei Y, Lin L, Chen Q, Yi S, Zuo Y, et al. The prevalence and molecular characterization of (dß)0-thalassemia and hereditary persistence of fetal hemoglobin in the Chinese Zhuang population. J Clin Lab Anal. 2018;32:e22304.
Sawant M, Gorivale M, Manchanda R, Colah R, Ghosh K, Nadkarni A, et al. Synergistic effect of two ß globin gene cluster mutations leading to the hereditary persistence of fetal hemoglobin (HPFH) phenotype. Mol Biol Rep. 2017;44(5):413-7.
Kerdpoo S, Limweeraprajak E, Tatu T. Effect of Swiss-type heterocellular HPFH from XmnI-G? and HBBP1 polymorphisms on HbF, HbE, MCV and MCH levels in Thai HbE carriers. Int J Hematol. 2014;99(3):338-44.
Muñoz Tormo-Figueres Á, Sanchis Calvo A, Guibert Zafra B. Epsilon gamma delta beta thalassemia: A rare cause of fetal and neonatal anemia. Med Clin (Barc). 2018;150(9):368-9.