2021, Number 4
<< Back Next >>
Med Int Mex 2021; 37 (4)
Vitamin D: A controversial vitamin
Valladares-García JC, Halabe-Cherem J
Language: Spanish
References: 40
Page: 586-593
PDF size: 251.72 Kb.
ABSTRACT
Vitamin D has acquired importance due to its transcendental role in the metabolic
functions of the human body, particularly in the maintenance of calcium homeostasis
and bone health. Its deficiency causes secondary hyperparathyroidism, accelerated
bone turnover, bone loss or alterations in mineralization leading to osteoporosis or,
in the case of a long-lasting and severe deficiency, osteomalacia. Vitamin D also has
effects on the immune system, the microendocrine system of the vasculature and in the
prevention of various types of cancer. Its deficiency is associated with cardiovascular,
autoimmune, oncological and infectious diseases and with complications in pregnancy,
congenital alterations and poor results in assisted reproduction. The evaluation of vitamin
D concentrations in high-risk populations and the treatment of hypovitaminosis
are measures that should be carried out by physicians.
REFERENCES
Bikle D. Vitamin D: Production, metabolism, and mechanisms of action. Endotext 2000; 25: 1-60.
Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 2017; 13 (8): 466-79. http://dx.doi.org/10.1038/nrendo.2017.31.
Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357 (3): 266-81. doi. 10.1056/NEJMra070553.
Cooke NE, Haddad JG. Vitamin D binding protein (Gcglobulin). Endocr Rev 1989; 10 (3): 294-307. doi. 10.1210/ edrv-10-3-294.
Nykjaer A, Dragun D, Walther D, Vorum H, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96 (4): 507-15. doi. 10.1016/s0092-8674(00)80655-8.
Zehnder D, Bland R, Williams MC, McNinch RW, et al. Extrarenal expression of 25-hydroxyvitamin D 3 -1á-hydroxylase 1. J Clin Endocrinol Metab 2001; 86 (2): 888-94. https:// doi.org/10.1210/jcem.86.2.7220.
Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 2012; 523 (1): 95-102. doi. 10.1016/j.abb.2012.02.016.
Rachez C, Gamble M, Chang C-PB, Atkins GB, et al. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 2000; 20 (8): 2718-26. doi.10.1128/MCB.20.8.2718-2726.2000.
Morelli S, De Boland AR, Boland RL. Generation of inositol phosphates, diacylglycerol and calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. Biochem J 1993; 289 (3): 675-9. doi. 10.1042/bj2890675.
Khare S, Bolt MJG, Wali RK, Skarosi SF, et al. 1,25 dihydroxyvitamin D3 stimulates phospholipase C-ã in rat colonocytes: Role of c-Src in PLC-ã activation. J Clin Invest 1997; 99 (8): 1831-41. doi. 10.1172/JCI119350.
Baran DT, Sorensen AM, Honeyman TW, Ray R, et al.1á,25-dihydroxyvitamin D3-induced increments in hepatocyte cytosolic calcium and lysophosphatidylinositol: Inhibition by pertussis toxin and 1â,25-dihydroxyvitamin D3. J Bone Miner Res 1990; 5 (5): 517-24. doi. 10.1002/ jbmr.5650050514.
Khanal RC, Nemere I. Regulation of intestinal calcium transport. Annu Rev Nutr 2008; 28: 179-96. https://doi. org/10.1146/annurev.nutr.010308.161202.
Nemere I, Leathers V, Norman AW. 1,25-dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (calbindin-D(28K)). J Biol Chem 1986; 261 (34): 16106-14. http://dx.doi.org/10.1016/ S0021-9258(18)66684-0.
Xu H, Bai L, Collins JF, Ghishan FK. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 2002; 282 (351-3): 487-93. https://doi.org/10.1152/ ajpcell.00412.2001.
Chenu C, Valentin-Opran A, Chavassieux P, Saez S, et al. Insulin like growth factor I hormonal regulation by growth hormone and by 1,25(OH)2D3 and activity on human osteoblast-like cells in short-term cultures. Bone 1990; 11 (2): 81-6. doi. 10.1016/8756-3282(90)90054-3.
Kurose H, Yamaoka K, Okada S, Nakajima S, et al. 1,25-dihydroxyvitamin D 3 [1,25-(OH)2 D 3] increases insulin-like growth factor I (IGF-I) receptors in clonal osteoblastic cells. Study on interaction of IGF-I and 1,25-(OH) 2 D 3. Endocrinology 1990; 126 (4): 2088-94. doi. 10.1210/ endo-126-4-2088.
Plachot JJ, Du Bois MB, Halpern S, Cournot-Witmer G, et al. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate. Metab Bone Dis Relat Res 1982; 4 (2): 135-42. https://doi. org/10.1016/0221-8747(82)90027-3.
Lian J, Stewart C, Puchacz E, Mackowiak S, et al. Structure of the rat osteocalcin gene and regulation of vitamin Ddependent expression. Proc Natl Acad Sci U S A 1989; 86 (4): 1143-7. doi. 10.1073/pnas.86.4.1143.
Owen TA, Aronow MS, Barone LM, Bettencourt B, et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: Dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in norma. Endocrinology 1991; 128 (3): 1496-504. doi. 10.1210/endo-128-3-1496.
Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J Cell Biochem 1992; 49 (1): 53-8. doi. 10.1002/ jcb.240490110.
Yasuda H, Shima N, Nakagawa N, Yamaguchi K, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 1998; 95 (7): 3597-602. http://doi.wiley.com/10.1002/jcb.240490110.
Li L, Schriock E, Dougall K, Givens C. Prevalence and risk factors of vitamin D deficiency in women with infertility. Fertil Steril 2012; 97 (3) S26. doi. 10.1016/j.fertnstert.2012.01.063.
Li L, Schriock E, Dougall K, Givens C. Prevalence and risk factors of vitamin D deficiency in women with infertility. Fertil Steril 2012; 97 (3) S26. doi. 10.1016/j.fertnstert.2012.01.063.
Wagner CL, Taylor SN, Dawodu A, Johnson DD, Hollis BW. Vitamin D and its role during pregnancy in attaining optimal health of mother and fetus. Nutrients 2012; 4 (3): 208-0. doi. 10.3390/nu4030208.
Ross AC, Taylor CL, Yaktine AL, Valle HB Del. Dietary reference intakes for calcium and vitamin D. National Academies Press (US) Washington, DC: National Academies Press, 2011; 1-662. http://www.nap.edu/catalog/13050.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, et al. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011; 96 (7): 1911-30. https://doi. org/10.1210/jc.2011-0385.
Holick MF. Vitamin D status: Measurement, interpretation, and clinical application. Ann Epidemiol 2009; 19 (2): 73-8. doi. 10.1016/j.annepidem.2007.12.001.
Logan VF, Gray AR, Peddie MC, Harper MJ, et al. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr 2013; 109 (6): 1082-8.
Tripkovic L, Lambert H, Hart K, Smith CP, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95 (6): 1357-64. doi. 10.3945/ajcn.111.031070.
Pietras SM. Obayan BK, Cai MH, Holick MF. Vitamin D2 Treatment for Vitamin D deficiency and insufficiency for up to 6 years. Arch Intern Med 2009; 169 (19): 1806.1818. doi. 10.1001/archinternmed.2009.361.
Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. Br Med J 2003; 326 (7387): 469-72. https://doi.org/10.1136/ bmj.326.7387.469.
Newberry SJ, Chung M, Shekelle PG, Booth MS, et al. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess (Full Rep) 2014; (217): 1-420.
Holick MF, Chen TC. Vitamin D deficiency: A worldwide problem with health consequences. Am J Clin Nutr 2008; 87 (4): 1080S-86S. https://doi.org/10.1093/ajcn/87.4.1080S.
Laird E, Rhodes J, Kenny RA. Vitamin D and inflammation: Potential implications for severity of Covid-19. Ir Med J 2020; 113 (5): 81.
Carpagnano GE, Di Lecce V, Quaranta VN, Zito A, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021; 44: 765-71. https://doi.org/10.1007/s40618-020-01370-x.
Meltzer DO, Best TJ, Zhang H, Vokes T, et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open 2020; 3 (9): e2019722. doi. 10.1001/jamanetworkopen.2020.19722.
Ecemis GC, Atmaca A. Quality of life is impaired not only in vitamin D deficient but also in vitamin D-insufficient pre-menopausal women. J Endocrinol Invest 2013; 36 (8):622-7. https://doi.org/10.3275/8898.
Masoudi-Alavi N, Madani M, Sadat Z, Haddad-Kashani H, et al. Fatigue and Vitamin D status in Iranian female nurses. Glob J Health Sci 2015; 8 (6): 196-202. doi. 10.5539/gjhs. v8n6p196.
Roy S, Sherman A, Monari-Sparks MJ, Schweiker O, et al. Correction of low vitamin D improves fatigue: Effect of correction of low vitamin D in fatigue study (EViDiF study). N Am J Med Sci 2014; 6 (8): 396-402. doi. 10.4103/1947- 2714.139291.
Havdahl A, Mitchell R, Paternoster L, Davey-Smith G. Investigating causality in the association between vitamin D status and self-reported tiredness. Sci Rep 2019; 9 (1): 1-8. http://dx.doi.org/10.1038/s41598-019-39359-z.