2021, Número 4
<< Anterior Siguiente >>
Med Int Mex 2021; 37 (4)
Vitamina D: una vitamina controvertida
Valladares-García JC, Halabe-Cherem J
Idioma: Español
Referencias bibliográficas: 40
Paginas: 586-593
Archivo PDF: 251.72 Kb.
RESUMEN
La vitamina D ha adquirido importancia por su trascendental papel en las funciones
metabólicas del cuerpo humano, en particular en el mantenimiento de la homeostasia
del calcio y la salud ósea. Su déficit provoca hiperparatiroidismo secundario, recambio
óseo acelerado, pérdida de hueso o alteraciones de la mineralización que conducen a
un cuadro de osteoporosis o, bien, si se trata de un déficit de larga duración y gravedad,
a un cuadro de osteomalacia. La vitamina D también ejerce efectos en el sistema
inmunológico, microendocrino de la vasculatura y en la prevención de distintos tipos
de cáncer. Su déficit se asocia con enfermedades cardiovasculares, autoinminitarias,
oncológicas e infecciosas y con complicaciones en el embarazo, alteraciones congénitas
y desenlaces adversos en la reproducción asistida. La evaluación de las concentraciones
de vitamina D en población en alto riesgo y el tratamiento de la hipovitaminosis
constituyen medidas que los médicos debemos llevar a cabo.
REFERENCIAS (EN ESTE ARTÍCULO)
Bikle D. Vitamin D: Production, metabolism, and mechanisms of action. Endotext 2000; 25: 1-60.
Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 2017; 13 (8): 466-79. http://dx.doi.org/10.1038/nrendo.2017.31.
Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357 (3): 266-81. doi. 10.1056/NEJMra070553.
Cooke NE, Haddad JG. Vitamin D binding protein (Gcglobulin). Endocr Rev 1989; 10 (3): 294-307. doi. 10.1210/ edrv-10-3-294.
Nykjaer A, Dragun D, Walther D, Vorum H, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96 (4): 507-15. doi. 10.1016/s0092-8674(00)80655-8.
Zehnder D, Bland R, Williams MC, McNinch RW, et al. Extrarenal expression of 25-hydroxyvitamin D 3 -1á-hydroxylase 1. J Clin Endocrinol Metab 2001; 86 (2): 888-94. https:// doi.org/10.1210/jcem.86.2.7220.
Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 2012; 523 (1): 95-102. doi. 10.1016/j.abb.2012.02.016.
Rachez C, Gamble M, Chang C-PB, Atkins GB, et al. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 2000; 20 (8): 2718-26. doi.10.1128/MCB.20.8.2718-2726.2000.
Morelli S, De Boland AR, Boland RL. Generation of inositol phosphates, diacylglycerol and calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. Biochem J 1993; 289 (3): 675-9. doi. 10.1042/bj2890675.
Khare S, Bolt MJG, Wali RK, Skarosi SF, et al. 1,25 dihydroxyvitamin D3 stimulates phospholipase C-ã in rat colonocytes: Role of c-Src in PLC-ã activation. J Clin Invest 1997; 99 (8): 1831-41. doi. 10.1172/JCI119350.
Baran DT, Sorensen AM, Honeyman TW, Ray R, et al.1á,25-dihydroxyvitamin D3-induced increments in hepatocyte cytosolic calcium and lysophosphatidylinositol: Inhibition by pertussis toxin and 1â,25-dihydroxyvitamin D3. J Bone Miner Res 1990; 5 (5): 517-24. doi. 10.1002/ jbmr.5650050514.
Khanal RC, Nemere I. Regulation of intestinal calcium transport. Annu Rev Nutr 2008; 28: 179-96. https://doi. org/10.1146/annurev.nutr.010308.161202.
Nemere I, Leathers V, Norman AW. 1,25-dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (calbindin-D(28K)). J Biol Chem 1986; 261 (34): 16106-14. http://dx.doi.org/10.1016/ S0021-9258(18)66684-0.
Xu H, Bai L, Collins JF, Ghishan FK. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 2002; 282 (351-3): 487-93. https://doi.org/10.1152/ ajpcell.00412.2001.
Chenu C, Valentin-Opran A, Chavassieux P, Saez S, et al. Insulin like growth factor I hormonal regulation by growth hormone and by 1,25(OH)2D3 and activity on human osteoblast-like cells in short-term cultures. Bone 1990; 11 (2): 81-6. doi. 10.1016/8756-3282(90)90054-3.
Kurose H, Yamaoka K, Okada S, Nakajima S, et al. 1,25-dihydroxyvitamin D 3 [1,25-(OH)2 D 3] increases insulin-like growth factor I (IGF-I) receptors in clonal osteoblastic cells. Study on interaction of IGF-I and 1,25-(OH) 2 D 3. Endocrinology 1990; 126 (4): 2088-94. doi. 10.1210/ endo-126-4-2088.
Plachot JJ, Du Bois MB, Halpern S, Cournot-Witmer G, et al. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate. Metab Bone Dis Relat Res 1982; 4 (2): 135-42. https://doi. org/10.1016/0221-8747(82)90027-3.
Lian J, Stewart C, Puchacz E, Mackowiak S, et al. Structure of the rat osteocalcin gene and regulation of vitamin Ddependent expression. Proc Natl Acad Sci U S A 1989; 86 (4): 1143-7. doi. 10.1073/pnas.86.4.1143.
Owen TA, Aronow MS, Barone LM, Bettencourt B, et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: Dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in norma. Endocrinology 1991; 128 (3): 1496-504. doi. 10.1210/endo-128-3-1496.
Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J Cell Biochem 1992; 49 (1): 53-8. doi. 10.1002/ jcb.240490110.
Yasuda H, Shima N, Nakagawa N, Yamaguchi K, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 1998; 95 (7): 3597-602. http://doi.wiley.com/10.1002/jcb.240490110.
Li L, Schriock E, Dougall K, Givens C. Prevalence and risk factors of vitamin D deficiency in women with infertility. Fertil Steril 2012; 97 (3) S26. doi. 10.1016/j.fertnstert.2012.01.063.
Li L, Schriock E, Dougall K, Givens C. Prevalence and risk factors of vitamin D deficiency in women with infertility. Fertil Steril 2012; 97 (3) S26. doi. 10.1016/j.fertnstert.2012.01.063.
Wagner CL, Taylor SN, Dawodu A, Johnson DD, Hollis BW. Vitamin D and its role during pregnancy in attaining optimal health of mother and fetus. Nutrients 2012; 4 (3): 208-0. doi. 10.3390/nu4030208.
Ross AC, Taylor CL, Yaktine AL, Valle HB Del. Dietary reference intakes for calcium and vitamin D. National Academies Press (US) Washington, DC: National Academies Press, 2011; 1-662. http://www.nap.edu/catalog/13050.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, et al. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011; 96 (7): 1911-30. https://doi. org/10.1210/jc.2011-0385.
Holick MF. Vitamin D status: Measurement, interpretation, and clinical application. Ann Epidemiol 2009; 19 (2): 73-8. doi. 10.1016/j.annepidem.2007.12.001.
Logan VF, Gray AR, Peddie MC, Harper MJ, et al. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr 2013; 109 (6): 1082-8.
Tripkovic L, Lambert H, Hart K, Smith CP, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95 (6): 1357-64. doi. 10.3945/ajcn.111.031070.
Pietras SM. Obayan BK, Cai MH, Holick MF. Vitamin D2 Treatment for Vitamin D deficiency and insufficiency for up to 6 years. Arch Intern Med 2009; 169 (19): 1806.1818. doi. 10.1001/archinternmed.2009.361.
Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. Br Med J 2003; 326 (7387): 469-72. https://doi.org/10.1136/ bmj.326.7387.469.
Newberry SJ, Chung M, Shekelle PG, Booth MS, et al. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess (Full Rep) 2014; (217): 1-420.
Holick MF, Chen TC. Vitamin D deficiency: A worldwide problem with health consequences. Am J Clin Nutr 2008; 87 (4): 1080S-86S. https://doi.org/10.1093/ajcn/87.4.1080S.
Laird E, Rhodes J, Kenny RA. Vitamin D and inflammation: Potential implications for severity of Covid-19. Ir Med J 2020; 113 (5): 81.
Carpagnano GE, Di Lecce V, Quaranta VN, Zito A, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021; 44: 765-71. https://doi.org/10.1007/s40618-020-01370-x.
Meltzer DO, Best TJ, Zhang H, Vokes T, et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open 2020; 3 (9): e2019722. doi. 10.1001/jamanetworkopen.2020.19722.
Ecemis GC, Atmaca A. Quality of life is impaired not only in vitamin D deficient but also in vitamin D-insufficient pre-menopausal women. J Endocrinol Invest 2013; 36 (8):622-7. https://doi.org/10.3275/8898.
Masoudi-Alavi N, Madani M, Sadat Z, Haddad-Kashani H, et al. Fatigue and Vitamin D status in Iranian female nurses. Glob J Health Sci 2015; 8 (6): 196-202. doi. 10.5539/gjhs. v8n6p196.
Roy S, Sherman A, Monari-Sparks MJ, Schweiker O, et al. Correction of low vitamin D improves fatigue: Effect of correction of low vitamin D in fatigue study (EViDiF study). N Am J Med Sci 2014; 6 (8): 396-402. doi. 10.4103/1947- 2714.139291.
Havdahl A, Mitchell R, Paternoster L, Davey-Smith G. Investigating causality in the association between vitamin D status and self-reported tiredness. Sci Rep 2019; 9 (1): 1-8. http://dx.doi.org/10.1038/s41598-019-39359-z.