2021, Number 1
<< Back Next >>
Arch Neurocien 2021; 26 (1)
Non-pharmacological intervention on inhibitory control in adolescents with attention-deficit / hyperactivity disorder
Hernández-Torres D, Licona-Oliver A
Language: Spanish
References: 50
Page: 24-31
PDF size: 256.49 Kb.
ABSTRACT
One of the main neuropsychological features in Attention-Deficit / Hyperactivity Disorder (ADHD) are
the failures in executive functioning, especially inhibitory control (IC), which is important for the stopping
of an ongoing response, permits a delay in the decision to respond and protects this period of time.
Due to these deficits, teenage population with ADHD are more susceptible to present behaviors such as
substance abuse, high-risk sexual behavior and the presence of comorbidities. The aim of the present
study was to conduct a review of the last 10 years about the non-pharmacological interventions on IC
in adolescents with ADHD. An electronic search was made in Scopus,
PubMed and Web of Sciences
databases, combining the next keywords: “intervention”, “inhibitory control”, “adolescents”, “teenagers”
and “ADHD”. Articles were selected from 2010 to 2020. Transcranial magnetic stimulation was the most
reported non-pharmacological intervention for enhancing the IC in adolescents with ADHD, followed
by physical exercise and neurofeedback. The lack of literature about this topic is a relevant issue to
generate future research lines about the treatment of executive functions in adolescents with ADHD.
REFERENCES
APA. Diagnostic and statistical manual of mental disorders: DSM-5. Fifth Edit. Washington, D. C.: American Psychiatric Publishing; 2013.
Willcutt EG. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics. 2012; 9(3):490–9. https://doi.org/10.1007/s13311-012-0135-8
Bandeira ID, Guimarães RSQ, Jagersbacher JG, Barretto TL, De Jesus-Silva JR, Santos SN, et al. Transcranial Direct Current Stimulation in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD). J Child Neurol. 2016; 31(7):918–24. https://doi. org/10.1177/0883073816630083
Chmielewski WX, Tiedt A, Bluschke A, Dippel G, Roessner V, Beste C. Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. NeuroImage Clin. 2018;19: 527–37. https://doi.org/10.1016/j.nicl.2018.05.019
Sonuga-Barke E, Brandeis D, Holtmann M, Cortese S. Computer-based Cognitive Training for ADHD. A Review of Current Evidence. Child Adolesc Psychiatr Clin N Am. 2014; 23(4):807–24. https://doi.org/10.1016/j. chc.2014.05.009
Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750
Cybele Raver C, Blair C. Neuroscientific insights: Attention, working memory, and inhibitory control. Futur Child. 2016; 26(2):95–118. https://files.eric.ed.gov/fulltext/EJ1118545.pdf
Chevrier A, Schachar RJ. BOLD differences normally attributed to inhibitory control predict symptoms, not task-directed inhibitory control in ADHD. J Neurodev Disord. 2020;12(1):1–12. https://doi.org/10.1186/ s11689-020-09311-8
Barkley RA. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. Psychol Bull. 1997; 121(1):65–94. https://doi.org/10.1037/0033-2909.121.1.65.
Menon V, Adleman N, White C, Glover G, Reiss A. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp. 2001; 12(3):131–43. DOI: 10.1002/1097-0193(200103)12:3<131::aidhbm1010> 3.0.co;2-c
Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1–17. https://doi.org/10.3758/cabn.7.1.1
Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage. 2011; 56(3):1655–65. http://dx.doi.org/10.1016/j. neuroimage.2011.02.070
Anderson P. Towards a developmental model of executive function. In: Anderson P, Anderson V, Jacobs R, editors. Executive Functions and the Frontal Lobes: a Lifespan Perspective. New York: Psychology Press; 2008, 3–21.
Uebel H, Albrecht B, Asherson P, Börger NA, Butler L, Chen W, et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J Child Psychol Psychiatry Allied Discip. 2010; 51(2):210–8. https://doi.org/10.1111/j.1469- 7610.2009.02139.x
Geurts HM, Van Der Oord S, Crone EA. Hot and cool aspects of cognitive control in children with ADHD: Decision-making and inhibition. J Abnorm Child Psychol. 2006; 34(6):813–24. https://doi.org/10.1007/s10802- 006-9059-2
Abad-Mas L, Ruiz-Andrés R, Moreno-Madrid F, M. Angeles S-C, Marcel C, Ivan D D-M, et al. Entrenamiento de funciones ejecutivas en el trastorno por déficit de atención/hiperactividad. Rev Neurol. 2011; 52(S01): S077-83
Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet. 2016; 387(10024):1240–50. https://doi.org/10.1016/S0140-6736(15)00238-X
Faraone S V., Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Prim. 2015;1. DOI: 10.1038/nrdp.2015.20
Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Modifiers of long-term school outcomes for children with attention-deficit/ hyperactivity disorder: Does treatment with stimulant medication make a difference? Results from a population-based study. J Dev Behav Pediatr. 2007; 28(4):274–87.DOI: 10.1097/DBP.0b013e3180cabc28
Wolraich M, Brown L, Brown RT, DuPaul G, Earls M, Feldman HM, et al. ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/ hyperactivity disorder in children and adolescents. Pediatrics. 2011;128(5):1007–22. https://doi. org/10.1542/peds.2011-2654
Gerber WD, Gerber-Von Müller G, Andrasik F, Niederberger U, Siniatchkin M, Kowalski JT, et al. The impact of a multimodal Summer Camp Training on neuropsychological functioning in children and adolescents with ADHD: An exploratory study. Child Neuropsychol. 2012; 18(3):242–55. 10.1080/09297049.2011.599115
Bluschke A, Friedrich J, Schreiter ML, Roessner V, Beste C. A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. NeuroImage Clin. 2018; 20:1191–203. doi: 10.1016/j.nicl.2018.10.027
Cairncross M, Miller CJ. The Effectiveness of Mindfulness-Based Therapies for ADHD: A Meta-Analytic Review. J Atten Disord. 2020;24(5):627–43. Doi: 10.1177/1087054715625301
Vysniauske R, Verburgh L, Oosterlaan J, Molendijk ML. The Effects of Physical Exercise on Functional Outcomes in the Treatment of ADHD: A Meta-Analysis. J Atten Disord. 2020;24(5):644–54. https://doi.org/ 10.1177/1087054715627489
D’Agati E, Hoegl T, Dippel G, Curatolo P, Bender S, Kratz O, et al. Motor cortical inhibition in ADHD: Modulation of the transcranial magnetic stimulation-evoked N100 in a response control task. J Neural Transm. 2014;121(3):315–25. https://doi.org/ 10.1007/s00702-013-1097-7
Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeckers J, Flechtner HH, et al. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10:1–10. https://doi.org/ 10.3389/fncel.2016.00072
Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, et al. Cortical inhibition in attention deficit hyperactivity disorder: New insights from the electroencephalographic response to transcranial magnetic stimulation. Brain. 2012;135(7):2215–30. https://doi.org/10.1111/jcpp.12312
Piepmeier AT, Shih CH, Whedon M, Williams LM, Davis ME, Henning DA, et al. The effect of acute exercise on cognitive performance in children with and without ADHD. J Sport Heal Sci. 2015; 4(1):97–104. https:// doi.org/10.1016/j.jshs.2014.11.004
Ludyga S, Brand S, Gerber M, Weber P, Brotzmann M, Habibifar F, et al. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Dev Cogn Neurosci. 2017; 28:21–8. https://doi.org/10.1016/j. dcn.2017.10.007
Kadri A, Slimani M, Bragazzi NL, Tod D, Azaiez F. Effect of taekwondo practice on cognitive function in adolescents with attention deficit hyperactivity disorder. Int J Environ Res Public Health. 2019;16(2):1–10. https://doi.org/10.3390/ijerph16020204
Baumeister S, Wolf I, Holz N, Boecker-Schlier R, Adamo N, Holtmann M, et al. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning? Neuroscience. 2018; 378:89–99. https:// doi.org/10.1016/j.neuroscience.2016.09.025
Spieser L, van den Wildenberg W, Hasbroucq T, Richard Ridderinkhof K, Burle B. Controlling your impulses: Electrical stimulation of the human supplementary motor complex prevents impulsive errors. J Neurosci. 2015; 35(7):3010–5. https://doi.org/10.1523/JNEUROSCI.1642-14.2015
Loftus AM, Yalcin O, Baughman FD, Vanman EJ, Hagger MS. The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav. 2015;5(5):1–9. https://doi.org/ 10.1002/brb3.332
Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology [Internet]. 2013;64:566–78. http:// dx.doi.org/10.1016/j.neuropharm.2012.06.020
Krause B, Cohen Kadosh R. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci. 2013; 6:176–94. http://dx.doi.org/10.1016/j.dcn.2013.04.001
Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology. 2010; 35(1):278–300. http://dx.doi. org/10.1038/npp.2009.120
Chang YK, Chu IH, Chen FT, Wang CC. Dose-response effect of acute resistance exercise on tower of London in middle-aged adults. J Sport Exerc Psychol. 2011;33(6):866–83. https://doi.org/ 10.1123/jsep.33.6.866
Chang YK, Tsai CL, Hung TM, So EC, Chen FT, Etnier JL. Effects of acute exercise on executive function: A study with a Tower of London task. J Sport Exerc Psychol. 2011; 33(6):847–65. https://doi.org/10.1123/ jsep.33.6.847
Chang YK, Liu S, Yu HH, Lee YH. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol. 2012; 27(2):225–37. https://doi.org/10.1093/arclin/ acr094
Van Dijk GP, Huijts M, Lodder J. Cognition improvement in Taekwondo novices over 40. Results from the SEKWONDO Study. Front Aging Neurosci. 2013; 5, 1–5. https://doi.org/10.3389/fnagi.2013.00074
Cho SY, Kim Y Il, Roh HT. Effects of taekwondo intervention on cognitive function and academic self-efficacy in children. J Phys Ther Sci. 2017;29(4):713–5. https://doi.org/10.1589/jpts.29.713
Lakes KD, Hoyt WT. Promoting self-regulation through school-based martial arts training. J Appl Dev Psychol. 2004;25(3):283–302. https:// doi.org/10.1016/j.appdev.2004.04.002
Kim YJ, Cha EJ, Kim SM, Kang KD, Han DH. The effects of taekwondo training on brain connectivity and body intelligence. Psychiatry Investig. 2015;12(3):335–40. https://doi.org/10.4306/pi.2015.12.3.335
Lakes KD, Bryars T, Sirisinahal S, Salim N, Arastoo S, Emmerson N, et al. The Healthy for Life Taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment Health Phys Act. 2013; 6(3):181–8. http://dx.doi.org/10.1016/j. mhpa.2013.07.002
Hernandez-Reif M, Field TM, Thimas E. Attention deficit hyperactivity disorder: Benefits from Tai Chi. J Bodyw Mov Ther. 2001; 5(2):120–3. https://doi.org/10.1054/jbmt.2000.0219
Hammond DC. Neurofeedback Around the World. J Neurother. 2008;10(4):25–36.
Alegria AA, Wulff M, Brinson H, Barker GJ, Norman LJ, Brandeis D, et al. Real-time fMRI neurofeedback in adolescents with attention deficit hyperactivity disorder. Hum Brain Mapp. 2017; 38(6):3190–209. https:// doi.org/10.1002/hbm.23584
Sonuga-Barke EJS, Fairchild G. Neuroeconomics of attention-deficit/ hyperactivity disorder: Differential influences of medial, dorsal, and ventral prefrontal brain networks on suboptimal decision making? Biol Psychiatry. 2012; 72(2):126–33. http://dx.doi.org/10.1016/j. biopsych.2012.04.004
McGuire JT, Nassar MR, Gold JI, Kable JW. Functionally Dissociable Influences on Learning Rate in a Dynamic Environment. Neuron. 2014; 84(4):870–81. http://dx.doi.org/10.1016/j.neuron.2014.10.013
Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. 2014; 38:125–34. http://dx.doi.org/10.1016/j. neubiorev.2013.07.012