2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Utilización de subproductos agroindustriales para la bioadsorción de metales pesados
Sanchez-Silva JM, González-Estrada RR, Blancas-Benitez FJ, Fonseca-Cantabrana Ä
Idioma: Español
Referencias bibliográficas: 123
Paginas: 1-18
Archivo PDF: 420.42 Kb.
RESUMEN
La contaminación por metales pesados es un problema que afecta a los ambientes acuáticos y terrestres, y cuya
principal fuente son las actividades antrópicas. Para atender este problema, la comunidad científica ha desarrollado
métodos físico-químicos para la remoción de metales pesados en efluentes contaminados: sin embargo, la mayoría
no son económicamente favorables, ya que presentan elevados costos de operación y mantenimiento, además de
que algunos generan residuos difíciles de manejar. Sin embargo, existe un método de bajo costo, altamente eficiente
y sin formación de contaminantes secundarios, denominado bioadsorción. La bioadsorción utiliza subproductos
agroindustriales con el objetivo de utilizar la excesiva generación de estos residuos como bioadsorbentes, para la
remoción de metales pesados en aguas residuales. La utilización de subproductos agroindustriales como bioadsorbentes
ha mostrado ser una alternativa para su aprovechamiento, consecuentemente, México tiene potencial en la producción
de bioadsorbentes. El objetivo de esta revisión es proporcionar información sistematizada del método de remoción de
metales pesados por bioadsorción a través del uso de subproductos agroindustriales.
REFERENCIAS (EN ESTE ARTÍCULO)
Abbas, S., Ismail, I., Mostafa, T. & Sulaymon, A. (2014). Biosorption of Heavy Metals: a Review. Journal of Chemical Science and Technology, 3, 74-102.
Abdolali, A., Guo, W. S., Ngo, H. H., Chen, S. S., Nguyen, N. C. & Tung, K. L. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresource Technology, 160, 57-66. DOI:10.1016/j. biortech.2013.12.037
Abdullah, N., Yusof, N., Lau, W., Jaafar, J. & Ismail, A. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38. DOI:10.1016/j.jiec.2019.03.029
Acosta, I., López, V., Coronado, E., Cárdenas, J. F. & Mártinez , V. M. (2010). Remoción de cromo (VI) en solución acuosa por la biomasa de cáscara de tamarindo (Tamarindus indica). BioTecnologia, 14(3), 11-17.
Aderhold, D., Williams, C. J. & Edyvean, R. G. (1996). The removal of heavy-metal ions by seaweeds and their derivatives. Bioresource Technology, 58(1), 1-6. DOI:10.1016/S0960-8524(96)00072-7
Agro Revista Industrial del Campo. (2016, Octubre 6). 2000 AGRO Revista Industrial del Campo. Retrieved from http://www.2000agro.com.mx/agroindustria/ agroindustria-mexicana/
Ahalya, N., Kanamadi, R. & Ramachandra, T. (2006). Biosorption of iron (III) from aqueous solutions using the husk of Cicer arietinum. Indian Journal of Chemical Technology, 13, 122-127.
Ahmet, S., Özgur, D. U. & Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chemical Engineering Journal, 167, 155-161. DOI:10.1016/j.cej.2010.12.014
Akpor, O., Ohiobor, G. & Olaolu, T. (2014). Heavy metal pollutants in wastewater effluents: Sources effects and remediation. Advances in Bioscience and Bioengineering, 2(4), 37-43. DOI:10.11648/j.abb.20140204.11
Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997-1026. DOI:10.1016/j.procbio.2004.04.008
Alfarra, A., Frackowiak, E. & Béguin, F. (2004). The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 228, 84-92. DOI:10.1016/j.apsusc.2003.12.033
Allard, B., Hakansson, K. & Karlsson, S. (2005). The importance of sorption phenomena in relation to trace element speciation and mobility. Lecture Notes in Earth Sciences, 99-112. DOI:10.1007/BFb0019696
Alomá, I., Martín-Lara, M., Rodríguez, I., Blázquez, G. & Calero, M. (2012). Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 275-281. DOI:10.1016/j.jtice.2011.10.011
Al-Qahtani, K. M. (2016). Water purification using different waste fruit cortexes for the removal of heavy metals. Journal of Taibah University for Science, 10, 700-708. DOI:10.1016/j.jtusci.2015.09.001
Aman, T., Kazi, A. A., Sabri, M. U. & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116-121. DOI:10.1016/j.colsurfb.2007.11.013
Amaral, A., Cruz, J., Cunha, R. & Rodrigues, A. (2006). Baseline Levels of Metals in Volcanic Soils of the Azores (Portugal). Soil & Sediment Contamination, 15, 123-130. DOI:10.1080/15320380500506255
Ansari, M. I. & Malik, A. (2007). Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology, 98(16), 3149-3153. DOI:10.1016/j.biortech.2006.10.008 . Anwar, J., Shafique, U., Zaman, W.-u., Salman, M., Dar, A. & Shafique, A. (2010). Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technology, 101, 1752-1755. DOI:10.1016/j. biortech.2009.10.021
Asadi, F., Shariatmadari, H. & Mirghaffari, N. (2008). Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. Journal of Hazardous Materials, 154(1-3), 451-458. DOI:10.1016/j.jhazmat.2007.10.046
Aydin, H., Bulut, Y. & Yerlikaya, Ç. (2008). Removal of copper (II) from aqueous solution by adsorption onto lowcost adsorbents. Journal of Environmental Management, 87, 37-45. DOI:10.1016/j.jenvman.2007.01.005
Bankar , A. & Nagaraja, G. (2018). Recent Trends in Biosorption of Heavy Metals by Actinobacteria. In B. Pratap Singh, A. Kumar Passari & V. Gupta Kumar, New and Future Developments in Microbial Biotechnology and Bioengineering; Actinobacteria: Diversity and Biotechnological Applications (pp. 257-275). Elsevier. DOI:10.1016/B978-0-444-63994-3.00018-7
Bansal, M., Garg, U., Singh, D. & Garg, V. (2009). Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk. Journal of Hazardous Materials, 162(1), 312-320. DOI:10.1016/j.jhazmat.2008.05.037
Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161(1), 62-67. DOI:10.1016/j. jhazmat.2008.02.122
Bhan, A. & Sarkar, N. (2004). Mercury in the Environment: Effect on Health and Reproduction. Reviews on environmental health, 20(1), 39-56. DOI:10.1515/ REVEH.2005.20.1.39
Bhatnagar, A. & Minocha, A. (2010). Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 76(2), 544-548. DOI:10.1016/j.colsurfb.2009.12.016
Bhatnagar, A. & Sillanpaa, M. (2010). Utilization of agroindustrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 157(2-3), 288-296. DOI:10.1016/j. cej.2010.01.007
Bhatnagar, A., Sillanpaa, M. & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244-271. DOI:10.1016/j.cej.2015.01.135
Bonilla-Petriciolet, A., Mendoza-Castillo, D. I. & Reynel, H. E. (2017). Adsorption Processes for Water Treatment and Purification. Chemistry Molecular Sciences and Chemical Engineering, 1-21. DOI:10.1016/B978-0-12- 409547-2.14390-2
Bulut, Y. & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19(2), 160-166. DOI:10.1016/ S1001-0742(07)60026-6
Burakov, A., Galumin, E., Bukarova, I., Kucherova, A., Agarwal, S., Tkachev, A. & Gupta, V. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Exotoxicology and Environmental Safety, 148, 702-712. DOI:10.1016/j.ecoenv.2017.11.034
Casas G, L. & Sandoval F, G. (2014). Enzimas en la valorización de residuos agroindustriales. Revista digital universitaria, 15(12), 1-15.
Covarrubias, S. A. & Peña Cabriales, J. J. (2017). Contaminación ambiental por metales pesados en méxico: Problematica y estrategias de fitoremediación. Revista Internacional de Contaminación Ambiental, 33, 7-21. DOI:10.20937/RICA.2017.33.esp01.01
Crini, G. (2005). Recent developments in polysaccharidebased materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38-70. DOI:10.1016/j.progpolymsci.2004.11.002
Cury, R., K., Aguas, M., Y., Martínez M., A., Olivero R., R. & Chams Ch., L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal, 9, 122-132. DOI:10.24188/recia. v9.nS.2017.530
Davis, T., Volesky, B. & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311-4330. DOI:10.1016/ S0043-1354(03)00293-8
Davis, T. A., Volesky, B. & Vieira, R. (2000). Sargassum seawed as biosorbent for heavy metals. Water Research, 34, 4270-4278. DOI:10.1016/S0043-1354(00)00177-9
Dhankhar, R. & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. DOI:10.1080/09593330.2011.572922
Ding, Y., Jing, D., Gong, H., Zhou, L. & Yang, X. (2012). Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technology, 114, 20-25. DOI:10.1016/j.biortech.2012.01.110
Diniz , V., Weber, M., Volesky, B. & Naja, G. (2008). Column biosorption of lanthanum and europium by sargassum. Water Research, 42, 363-371. DOI:10.1016/j. watres.2007.07.027
Dursun, A. Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28(2), 187-195. DOI:10.1016/j.bej.2005.11.003
Eccles, H. (1999). Treatment of metal-contaminated wastes: Why select a biological process? Trends in Biotechnology, 17(12), 462-465. DOI: 10.1016/S0167-7799(99)01381-5
Enniya, I., Rghioui, L. & Jourani, A. (2018). Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustaintable Chemistry and Pharmacy, 7, 9-16. DOI:10.1016/j.scp.2017.11.003
Farooq, U., Kozinski, J. A., Khan, M. A. & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresource Technology, 101(14), 5043-5053. DOI:10.1016/j. biortech.2010.02.030
Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50(1), 132-140. DOI:10.1016/j.seppur.2005.11.016
Gadd, G. (2008). Biosorption: critical review of scientific rationale,environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13-28. DOI:10.1002/jctb.1999
Gautam, R. K., Mudhoo, A., Lofrano, G. & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2(1), 239-259. DOI:10.1016/j.jece.2013.12.019
Gisi, S. D., Lofrano, G., Grassi, M. & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10-40. DOI:10.1016/j. susmat.2016.06.002
González S., M. E., Pérez F., S., Wong W., A., Bello M., R. & Yañez O., G. (2015). Residuos agroindustriales con potencial para la producción de metano mediante la digestión anaerobia. Revista Argentina de Microbiología, 47(3), 229-235. DOI:10.1016/j.ram.2015.05.003
Grassi, M., Kaykioglu, G., Belgiorno, V. & Lofrano, G. (2012). Removal of Emerging Contaminants from Water and Wastewate by Adsorption Process. In G. Lofrano, Emerging Compounds Removal from Wastewater: Natural and Solar Based Treatments (pp. 29-51). Italia: Springer. DOI:10.1007/978-94-007-3916-1
Greene, B., Henzl, M., Hosea, J. & Darnall, D. (1986). Elimination of Bicarbonate Intederence in the Binding of U(Vl) in Mill-Waters to Freeze-dried Chlorella vulgaris. Biotechnology and Bioengineering, 18, 764-767. DOI:10.1002/bit.260280519
Gu, J., Liang, J., Chen, C., Li, K., Zhou, W., Jia, J. & Sun, T. (2020). Treatment of real deplating wastewater through an environmental friendly precipitation-electrodepositionoxidation process: Recovery of silver and copper and reuse of wastewater. Separation and Purification Technology, 248, 117082. DOI: 10.1016/j.seppur.2020.117082
Gupta, V. K., Rastogi, A. & Nayak, A. (2010). Biosorption of nickel onto treated algae (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342(2), 533-539. DOI:10.1016/j. jcis.2009.10.074
Hlihor, R. M., Bulgariu, L., Sobariu, D. L., Diaconu, M., Tavares, T. & Gavrilescu, M. (2014). Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Revue Roumaine de Chimie, 59, 527-238.
Hossain, M., Ngo, H., Guo, W. & Setiadi, T. (2012). Adsorption and desorption of copper(II) ions onto garden grass. Bioresource Technology, 121, 386-395. DOI:10.1016/j. biortech.2012.06.119
Huang, K. & Zhu, H. (2013). Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel. Environmental Science and Pollution Research, 20(7), 4424-4434. DOI:10.1007/s11356-012- 1361-7
Husein, D. Z. (2013). Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalination and Water Treatment, 51(34-36), 6761-6769. DOI:10.1080/1 9443994.2013.801793
Iqbal, M., Saeed, A. & Kalim, I. (2009). Characterization of Adsorptive Capacity and Investigation of Mechanism of Cu2+, Ni2+ and Zn2+ Adsorption on Mango Peel Waste from Constituted Metal Solution and Genuine Electroplating Effluent. Separation Science and Technology, 44(15), 3770-3791. DOI:10.1080/01496390903182305
Javanbakht, V., Alavi Amir, S. & Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science & Technology, 69(9), 1775- 1787. DOI:10.2166/wst.2013.718
Jobby, R., Jha, P., Yadav Kumar, A. & Desai, N. (2018). Biosorption and biotransformation of hexavalent Chromium [Cr (VI)]: A comprehensive review. Chemosphere, 207, 255-266. DOI:10.1016/j. chemosphere.2018.05.050
Kaizer, A. & Osakwe, S. (2010). Physicochemical characteristics and heavy metal levels in water samples from five river systems in Delta State, Nigeria. J. Applicat. Sci. Environ. Manage, 14(1), 83-87. DOI:10.4314/jasem. v14i1.56501
Khoramzadeh, E., Nasernejad, B. & Halladj, R. (2013). Mercury biosorption from aqueous solutions by Sugarcane Bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 266-269. DOI:10.1016/j. jtice.2012.09.004
Khosa, M. & Ullah, A. (2018). Mechanistic insight into protein supported biosorption complemented by kinetic and thermodynamics perspectives. Advances in Colloid and Interfance Science, 261, 28-40. DOI:10.1016/j. cis.2018.09.004
Krishnani, K. K., Meng, X., Christodoulatos, C. & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153(3), 1222-1234. doi:10.1016/j. jhazmat.2007.09.113
Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122-131. DOI:10.1016/j.cej.2010.12.010
Kurniawan, T. A., Chan, G., Lo, W.-H. & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83-98. DOI:10.1016/j.cej.2006.01.015
Kuyucak, N. & Volesky, B. (1989). The mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823- 831. DOI:10.1002/bit.260330705
Liu, W., Liu, Y., Tao, Y., Yu, Y. & Jiang, H. (2014). Comparative study of adsorption of Pb(II) on native garlic peel and mercerized garlic peel. Environmental Science and Pollution Research, 21(3), 2054-2063. DOI:10.1007/ s11356-013-2112-0
Liu, Z., Wang, L.-a., Xiao, H., Guo, X., Urbanovich, O., Nagorskaya, L. & Li, X. (2020). A review on control factors of pyrolysis technology for plants containing heavy metals. Ecotoxicology and Environmental Safety, 191, 110-181. doi:10.1016/j.ecoenv.2020.110181
Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261-278. DOI:10.1016/j.envint.2003.08.001
Mclean, R., Fortin, D. & Brown, D. (2011). Microbial metalbinding mechanisms and their relation to nuclear waste disposal. Canadian Journal of Microbiology, 42, 392- 400. DOI:10.1139/m96-055
Mendoza Castillo, D. (2012). Sorción multicomponente de metales pesados en agua empleando carbón de hueso. Tesis para obtener el grado de Doctora en Ciencias Biológicas, 100-101.
Michalak , I., Chojnacka, K. & Witek Krowiak, A. (2013). State of the Art for the Biosorption Process - a Review. Applied Biochemistry and Biotechnology, 170, 1389- 1416. DOI:10.1007/s12010-013-0269-0
Miretzky, P. & Fernandez Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180, 1-19. DOI:10.1016/j. jhazmat.2010.04.060
Montazer-Rahmati, M., Rabbani, P., Abdolali, A. & Keshtkar, A. R. (2011). Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, (185), 401-407. DOI:10.1016/j.jhazmat.2010.09.047
Naja, G. & Volesky, B. (2011). Chapter 3: The Mechanism of Metal Cation and Anion Biosorption. In P. kotrba, M. Mackova & T. Macek, Microbial Biosorption of Metals (pp. 19-58). Springer. DOI:10.1007/978-94-007-0443-5
Naja, G., Murphy, V. & Volesky, B. (2010). Biosorption, Metals. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 29. DOI:10.1002/9780470054581.eib166.
Narváez, M. (2018, Diciembre 5). Cienciamx. Retrieved from www.cienciamx.com/index.php/ciencia/quimica/23762- aprovechamiento-residuos-agroindustriales-citricos
Naseem, R. & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982-3986. DOI:10.1016/S0043-1354(01)00130-0
Nijkam, E. & Schiewer, S. (2012). Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration. Journal of Hazardous Materials, 213-214, 242-248. DOI:10.1016/j. jhazmat.2012.01.084
Nordberg, G., Herber, R. & Alessio, L. (1992). Cadmium in the Human Environment: Toxicity and Carcinogenicity. IARC Scientific Publications, 469.
O´Connell, D. W., Birkinshaw, C. & O´Dwyer, T. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99(15), 6709-6724. DOI:10.1016/j.biortech.2008.01.036
Ogura, H., Takeuchi, T. & Morimoto, K. (1996). A comparison of the 8-hydroxydeoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutation Research/Reviews in Genetic Toxicology, 340, 175-182. DOI:10.1016/ S0165-1110(96)90047-0
Panigatti, M., Torres, J., Griffa, C., Boglione, R. & Gentinetta, F. (2007). Biorremediación de efluentes con cromo (VI) proveniente de plantas metalmecanicas. Revista de Ingeniería y Ciencias Ambientales: Investigación, desarrollo y práctica. (AIDIS), 1(2)
Park, D., Yun, Y.-S. & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86-102. DOI:10.1007/ s12257-009-0199-4
Pavan, F. A., Mazzocato, A. C., Jacques, R. A. & Dias, S. L. (2008). Ponkan peel: A potential biosorbent for removal of Pb(II) ions from aqueous solution. Biochemical Engineering Journal, 40(2), 357-362. DOI:10.1016/j. bej.2008.01.004
Pehlivan, E., Altun, T. & Parlayici, S. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 135(4), 2229- 2234. DOI:10.1016/j.foodchem.2012.07.017
Pellera, F., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. & Gidarakos, E. (2012). Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96(1), 35-42. DOI:10.1016/j.jenvman.2011.10.010
Poots , V., McKay, G. & Healy, J. (1976). The removal of acid dye from effluent using natural adsorbents - I Peat. Water Research, 10, 1061-1066. DOI:10.1016/0043- 1354(76)90036-1
Rangabhashiyam, S. & Balasubramanian, P. (2019). Characteristics, perfomances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresource Technology Reports, 5, 261-279. DOI:10.1016/j.biteb.2018.07.009
Rangabhashiyam, S., Lata, S. & Balasubramanian, P. (2018). Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces, 10, 197-215. doi:10.1016/j.surfin.2017.09.011
Rangabhashiyam, S., Selvaraju, S., Selvaraju, N. & Varguese, L. A. (2014). Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World Journal of Microbiology and Biotechnology, 30(6), 1-21. DOI:10.1007/s11274-014-1599-y
Rao, L. N. & Prabhakar, G. (2011). Removal of heavy metals by biosorption - an overall review. Journal of Engineering Research and Studies, 2(4), 7-22.
Rao, K., Mohapatra, M., Anand, S. & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2(7), 81-103. DOI:10.4314/ijest. v2i7.63747
Rocha, C. G., Morozin Z, D. A., Ventura da Silva A., R. & Alberto da Silva A., A. A. (2009). Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. Journal of Hazardous Materials, 166(1), 383-388. DOI:10.1016/j. jhazmat.2008.11.074
Rubio, J., Souza, M. L. & Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Enginerring, 15(3), 139-155. DOI: 10.1016/s0892- 6875(01)00216-3
Sag, Y. & Kursal, T. (2001). Recent Trends in the Biosorption of Heavy Metals: A Review. Biotechnology and Bioprocess Enginnering, 6(6), 376-385. DOI:10.1007/BF02932318
Saha, R., Mukherjee, K. & Saha, I. (2013). Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Research on Chemical Intermediates, 39(5), 2245-2257. DOI:10.1007/s11164- 012-0754-z
Salvador, F., Martín-Sánchez, N., Sánchez-Hernández, R., Sánchez-Montero, M. J. & Izquierdo, C. (2015a). Regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. Microporous and Mesoporous Materials, 202, 259-276. DOI:10.1016/j.micromeso.2014.02.045
Salvador, F., Martín S. N., Sánchez, H. R., Sánchez, M. J. & Izquierdo, C. (2015b). Regeneration of carbonaceous adsorbents. Part II: Chemical, Microbiological and Vacuum Regeneration. Microporous and Mesoporous Materials, 202, 277-296. DOI:10.1016/j.micromeso.2014.08.019
Sanfeliu, C., Sebastia, J., Cristófol, R. & Rodriguez-Farre, E. (2003). Neurotoxicity of organomercurial compounds. Neurotoxicity Research, 5(4), 283-305. DOI:10.1007/ BF03033386
Santos , S., Ungureanu, G., Volf, I., Boaventura, R. & Botelho, C. (2018). Macroalgae Biomass as Sorbent for Metal Ions. In V. Popa, I. Volf & Elsevier (Ed.), Biomass as Renewable Raw Material to Obtain Bioproducts of High- Tech Value (pp. 69-112). Elsevier. DOI:10.1016/B978-0- 444-63774-1.00003-X
Sardar, K., Ali, S., Hammed, S., Afzal, S., Fatima, S., Bilal, S. M., Aslam, B. S. & Tauqeer, H. M. (2013). Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener Journal of Environment Management and Public Safety, 2(4), 172-179. DOI:10.15580/ GJEMPS.2013.4.060413652
Schoeters, G., Hond, E., Zuurbier, M., Naginiene, R., Van Den Hazel, P., Stilianakis, N., Ronchetti, R. & Koppe, J. G. (2008). Cadmium and children: Exposure and health effects. Acta Paediatrica, 95, 50-54. DOI:10.1080/08035320600886232
Šćiban, M., Radetic, B., Kevrešan, Ž. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98(2), 402-409. DOI:10.1016/j.biortech.2005.12.014
Sha, L. X. & Ningchuan, F. Q. (2009). Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids and Surfaces B: Biointerfaces, 73(1), 10-14. DOI:10.1016/j. colsurfb.2009.04.021
Sousa, F. W., Oliveira, A. G., Ribeiro, J. P., Rosa, M. F., Keukeleire, D. & Nascimento, R. F. (2010). Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. Journal of Environmental Management, 91(8), 1634-1640. DOI:10.1016/j.jenvman.2010.02.011
Sutherland, C. & Venkobachar, C. (2010). A diffusionchemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. International Research Journal of Plant Science, 1(4), 107-117.
Svecova, L., Spanelova, M., Kubal, M. & Guibal, E. (2006). Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Separation and Purification Technology, 52, 142- 153. DOI:10.1016/j.seppur.2006.03.024
Tan, G. & Xiao, D. (2009). Adsorption of cadmium ion from aqueous solution by ground wheat stems. Journal of Hazardous Materials, 164(2-3), 1359-1363. DOI:10.1016/j.jhazmat.2008.09.082
Tan, G., Yuan, H., Liu, Y. & Xiao, D. (2010). Removal of lead from aqueous solution with native and chemically modified corncobs. Journal of Hazardous Materials, 174(1-3), 740-745. DOI:10.1016/j.jhazmat.2009.09.114
Tasaso, P. (2014). Adsorption of Copper Using Pomelo Peel and Depectinated Pomelo Peel. Clean Energy Technology, 2, 154-157. DOI:10.7763/JOCET.2014.V2.112
Tejada Tovar, C., Villabona Ortiz, Á. & Garcés Jaraba, L. (2015). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. TecnoLógicas, 18(34), 109-123. DOI:10.22430/22565337.209
Torab, M. M., Asadollahzadeh, M., Hemmati, A. & Khosravi, A. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 295-302. DOI:10.1016/j. jtice.2012.11.001
Uluozlu, O., Sari, A., Tuzen, M. & Soylak, M. (2008). Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Techonology, 99, 2972-2980. DOI:10.1016/j. biortech.2007.06.052
USEPA, U. S. (2007). Framework for Metals Risk Assessment. Washington.
Valdez, V. I., Acevedo B., J. A. & Hernández S., C. (2010). Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renewable and Sustainable Energy Reviews, 14, 2147-2153. DOI:10.1016/j.rser.2010.03.034
Valdman, E., Erijman, L., Pessoa, F. & Leite, S. (2001). Continuous biosorption of Cu and Zn by immobilized waste. Process Biochemistry, 36, 869-873. DOI:10.1016/ S0032-9592(00)00288-0
Valko, M., Rhodes, C., Moncol, J., Izakovic, M. & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40. DOI:10.1016/j.cbi.2005.12.009
Vardhan, K., Kumar, P. & Panda, R. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197 DOI:10.1016/j.molliq.2019.111197
Velázquez Jiménez, L., Pavlick, A. & Rangel Méndez, J. (2013). Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Industrial Crops and Products, 43, 200-206. DOI:10.1016/j.indcrop.2012.06.049
Vijayaraghavan, K. & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266- 291. DOI:10.1016/j.biotechadv.2008.02.002
Volesky, B. (2007). Biosorption and me. Water Research, 41, 4017-4029. DOI:10.1016/j.watres.2007.05.062
Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: Kinetics, equilibrium and mechanism of the process. Chemical Engineering Journal, 192(1), 13-20. DOI:10.1016/j. cej.2012.03.075
Won, S., Han, M. & Yun, Y. (2008). Different blinding mechanisms in biosorption of reactive dyes according to their reactivity. Water Research, 42, 4847-4855. DOI:10.1016/j.watres.2008.09.003