2019, Número 3
<< Anterior
Rev Mex Periodontol 2019; 10 (3)
Defensinas humanas y su función en cavidad oral
Ortiz-Casillas MI, Alvizo-Rodríguez CR, Ortíz-García YM, Fuentes-Lerma MG, Gutiérrez-Angulo M, Mariaud-Schmidt RP
Idioma: Español
Referencias bibliográficas: 65
Paginas: 77-83
Archivo PDF: 636.95 Kb.
RESUMEN
La cavidad oral proporciona un entorno cálido y húmedo que hace a la flora bucal normal extremadamente compleja y propicia para la colonización por hongos, virus y bacterias, requiriendo múltiples tipos de defensas para prevenir infecciones. Los péptidos antimicrobianos son importantes contribuyentes para mantener el equilibrio entre la salud y la enfermedad, éstos realizan varias funciones esenciales para la defensa contra los microorganismos, lo que modifica la respuesta inflamatoria local y activa mecanismos de reacción inmunitaria adaptativa, participando de esta manera en la modulación de la respuesta inmunológica, que otorga especificidad funcional y los clasifica en diferentes familias, una de ellas las defensinas. En el presente reporte se hace una revisión de la función y expresión de las defensinas y su relación con la cavidad oral.
REFERENCIAS (EN ESTE ARTÍCULO)
Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. 8a edición. España: Elsevier; 2015. p. 23.
Roa NS, Rodríguez A. Inmunidad celular y humoral frente a microrganismos cariogénicos y sus factores de virulencia en caries dental en humanos naturalmente sensibilizados. Univ Odontol. 2013; 32 (69): 61‑72.
Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000; 12 (2): 121‑127.
DeFranco AL, Locksley RM, Robertson M. Immunity: The immune response to infectious and inflammatory disease. Yale J Biol Med. 2007; 80 (3): 137‑142.
Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol. 2005; 125: 9‑13.
Schauber J, Gallo RL. Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J Invest Dermatol. 2007; 127 (3): 510‑512.
Koczulla R, Von Degenfeld G, Kupatt C, Krotz E, Zahler S, Gloe T et al. An angiogenic role for the human peptide antibiotic LL‑37/hCAP‑18. J Clin Invest. 2003; 111: 1665‑1672.
Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016; 44: 1087‑1093.
Avila EE. Functions of antimicrobial peptides in vertebrates. Curr Protein Pept Sci. 2017; 18 (11): 1098‑1119.
Lee SI, Kang SK, Jung HJ, Chun YH, Kwon YD, Kim EC. Muramyl dipeptide activates human beta defensin 2 and proinflammatory mediators through toll‑like receptors and NLRP3 inflammasomes in human dental pulp cells. Clin Oral Invest. 2015; 19 (6): 1419‑1428.
Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006; 19 (3): 491‑511.
Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002; 66 (4): 236‑248.
Brogden KA, Ackermann M, Huttner KM. Small, anionic, and charge‑neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob Agents Chemother. 1997; 41 (7): 1615‑1617.
Téllez GA, Castaño JC. Péptidos antimicrobianos. Infectio. 2010; 14 (1): 55‑67.
Sang Y, Blecha F. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev. 2008; 9 (2): 227‑235.
Dale BA, Tao R, Kimball JR, Jurevic RJ. Oral antimicrobial peptides and biological control of caries. BMC Oral Health. 2006; 6 Suppl 1: S13.
Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. Human beta‑defensins. Cell Mol Life Sci. 2006; 63 (11): 1294‑1313.
Gallo RL, Hooper LV. Epithelial antimicrobial defense of the skin and intestine. Nat Rev Immunol. 2012; 12 (7): 503‑516.
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003; 3 (9): 710‑720.
Castrillón LE, Palma A, Padilla C. Péptidos antimicrobianos: antibióticos naturales de la piel. Dermatología Rev Mex. 2007; 51 (2): 57‑67.
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontology 2000. 2015; 69: 96‑110.
US National Library of Medicine National Institutes of Health. Homo sapiens DEFA/DEFB. PubMed. 2019. [Último acceso el 21 de octubre 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/homosapiensDEFA/DEFB
Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N et al. Recent advances in the research and development of human defensins. Peptides. 2006; 27 (4): 931‑940.
Ganz T, Selsted ME, Szklarek D, Harwig SSL, Deher K, Bainton DF et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985; 76 (4): 1427‑1435.
Dawes C, Pedersen AM, Villa A, Ekström J, Proctor GB, Vissink A et al. The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015; 60 (6): 863‑874.
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J. 2016; 24 (5): 515‑524.
Sankaran S, Hart R, Dills C. Guardians of the gut: enteric defensins. Frontiers in Microbiology. 2017; 8: 647‑654.
Lehrer RI, Lu W. α‑Defensins in human innate immunity. Immunological Reviews. 2012; 245: 84‑112.
Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S et al. Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules. 2017; 22: 1217‑1232.
Nakamura K, Sakuragi N, Takakuwa A, Ayabe T. Paneth cell α‑defensins and enteric microbiota in health and disease. Biosci Microbiota Food Health. 2016; 35 (2): 57‑67.
Mattar EH, Almehdar HA, Yacoub HA, Uversky VN, Redwan EM. Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine Growth Factor Rev. 2016; 28: 95‑111.
Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W et al. Purification, primary structures, and antibacterial activities of beta‑defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993; 268 (9): 6641‑6648.
Diamond DL, Kimball JR, Krisanaprakornkit S, Ganz T, Dale BA. Detection of β‑defensins secreted by human oral epithelial cells. J Immunol Methods. 2001; 256 (1‑2): 65‑76.
Zhang G, Sunkara LT. Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals (Basel). 2014; 7 (3): 220‑246.
Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol. 2006; 6 (6): 447‑456.
Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol. 2000; 20 (5): 407‑431.
Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta ‑defensin‑3, a novel human inducible peptide antibiotic. J Biol Chem. 2001; 276 (8): 5707‑5713.
Coretti L, Natale A, Cuomo M, Florio E, Keller S, Lembo F et al. The interplay between defensins and microbiota in Crohn’s Disease. Mediat Inflamm. 2017; 2017: 8392523.
Zhu BD, Feng Y, Huang N, Wu Q, Wang BY. Mycobacterium bovis bacille Calmette‑Guérin (BCG) enhances human beta‑defensin‑1 gene transcription in human pulmonary gland epithelial cells. Acta Pharmacol Sin. 2003; 24 (9): 907‑912.
Yang D, Liu ZH, Tewary P, Chen Q, de la Rosa G, Oppenheim JJ. Defensin participation in innate and adaptive immunity. Current Pharmaceutical Design. 2007; 13: 3131‑3139.
Cagliani R, Fumagalli M, Riva S, Pozzoli U, Comi GP, Menozzi G et al. The signature of long‑standing balancing selection at the human defensin β‑1 promoter. Genome Biology. 2008; 9 (9): 143‑154.
Sayama K, Komatsuzawa H, Yamasaki K, Shirakata Y, Hanakawa Y, Ouhara K et al. New mechanisms of skin innate immunity: ASK1‑mediated keratinocyte differentiation regulates the expression of b‑defensins, LL37, and TLR2. Eur J Immunol. 2005; 35 (6): 1886‑1895.
Fattorini L, Gennaro R, Zanetti M, Tan D, Brunori L, Giannoni F et al. In vitro activity of protegrin‑1 and beta‑defensin‑1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides. 2004; 25: 1075‑1077.
Sun L, Finnegan CM, Kish‑Catalone T, Blumenthal R, Garzino‑Demo P, La Terra Maggiore GM et al. Human beta‑defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J Virol. 2005; 79 (22): 14318‑14329.
Prado E. Defensinas humanas: ¿profilaxis y terapia contra el VIH? Gac Méd Méx. 2006; 142 (5): 431‑433.
Bullard RS, Gibson W, Bose SK, Belgrave JK, Eaddy AC, Wright CJ et al. Functional analysis of the host defense peptide human beta defensin‑1: new insight into its potential role in cancer. Mol Immunol. 2008; 45: 839‑848.
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009; 15 (21): 2377‑2392.
Sorsa T, Gursoy UK, Nwhator S, Hernandez M, Tervahartiala T, Leppilahti J et al. Analysis of matrix metalloproteinases in gingival crevicular fluid (GCF), mouthrinse and saliva for monitoring periodontal diseases. Periodontology 2000. 2016; 70: 142‑163.
Zhao C, Wang I, Lehrer RI. Widespread expression of β‑defensin hBD‑1 in human secretory glands and epithelial cells. FEBS Letters. 1996; 396: 319‑322.
Diamond G, Beckloff N, Ryan LK. Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res. 2008; 87 (10): 915‑927.
Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T. Defensin‑1, an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis. 1999; 5: 139‑142.
Sawaki K, Mizukawa N, Yamaai T, Yoshimoto T, Nakano M, Sugahara T. High concentration of betadefensin‑ 2 in oral squamous cell carcinoma. Anticancer Res. 2002; 22 (4): 2103‑2107.
Bonass WA, High AS, Owen PJ, Devine DA. Expression of β‑defensin genes by human salivary glands. Oral Microbiol Immunol. 1999; 14 (6): 371‑374.
Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M et al. Human β‑defensin 2 is a salt‑sensitive peptide antibiotic expressed in human lung. J Clin Invest. 1998; 102 (5): 874‑880.
McKay MS, Olson E, Hesla MA, Panyutich A, Ganz T, Perkins S et al. Immunomagnetic recovery of human neutrophil defensins from the human gingival crevice. Oral Microbiol Immunol. 1999; 14 (3): 190‑193.
Navarra CO, Robino A, Pirastu N, Bevilacqua L, Gasparini P, Di Lenarda R et al. Caries and innate immunity: DEFB1 gene polymorphisms and caries susceptibility in genetic isolates from north‑eastern ital. Caries Research. 2016; 50: 589‑594.
Goeke E, Kist S, Schubert S, Hickel R, Huth K, Killmuss M. Sensitivity of caries pathogens to antimicrobial peptides related to caries risk. Clin Oral Investig. 2018; 22 (7): 2519‑2525.
Lee JK, Chang SW, Perinpanayagam H, Lim SM, Park YJ, HanSH et al. Antibacterial efficacy of a human β‑defensin‑3 peptide on multispecies biofilms. J Endod. 2013; 39 (12): 1625‑1629.
Farges JC, Alliot‑Licht B, Renard E, Ducret M, Gaudin A, Smith AJ et al. Dental pulp defence and repair mechanisms in dental caries. Mediators Inflamm. 2015; 2015: 230251.
Hahn CL, Best AM, Tew JG. Cytokine induction by Streptococcus mutans and pulpal pathogenesis. Infect Immun. 2000; 68 (12): 6785‑6789.
Hosokawa Y, Hirao K, Yumoto H, Washio A, Nakanishi T, Takegawa D et al. Functional roles of NOD1 in odontoblasts on dental pulp innate immunity. Biomed Res Int. 2016; 2016: 9325436.
Cooper PR, Holder MJ, Smith AJ. Inflammation and regeneration in the dentin‑pulp complex: a double‑edged sword. J Endod. 2014; 40: 46‑51.
Nishimura E, Eto A, Kato M, Hashizume S, Imai S, Nisizawa T et al. Oral streptococci exhibit diverse susceptibility to human β‑dedensin‑2: antimicrobial effects of hBD‑2 on oral streptococci. Curr Microbiol. 2004; 48: 85‑87.
Abiko Y, Suraweera A, Nishimura M, Taishin TA, Mizoguchi I, Kaku T. Differential expression of human beta‑defensin 2 in keratinized and non‑keratinized oral epithelial lesions: immunohistochemistry and in situ hybridization. Virchows Arch. 2001; 438: 248‑253.
Sun CQ, Arnold RS, Hsieh CL, Dorin JR, Lian F, Li Z et al. Discovery and mechanisms of host defense to oncogenesis: targeting the β‑defensin‑1 peptide as a natural tumor inhibitor. Cancer Biol Ther. 2019; 20 (6): 774‑786.