2019, Número 3
<< Anterior Siguiente >>
Rev Mex Periodontol 2019; 10 (3)
Relación de la periodontitis y artritis reumatoide a través del eje IL-23/IL-17A
Rodríguez-Montaño R, Aguilar-Carrillo JA, Bernard-Medina AG, Martínez-Rodríguez VMC, Gómez-Meda BC, Guerrero-Velázquez C
Idioma: Español
Referencias bibliográficas: 69
Paginas: 69-76
Archivo PDF: 763.81 Kb.
RESUMEN
La artritis reumatoide (AR) y la periodontitis (P) son enfermedades inflamatorias crónicas. De manera reciente, se ha descrito que 90% de los pacientes con AR presentan P. Ambas patologías se caracterizan por la destrucción de la articulación y el hueso alveolar, respectivamente. Se sabe que 1% de la población mundial presenta artilugios y en México es el 1.6%. Sobre la periodontitis, su prevalencia es de 15 a 20% de la población mundial y en México es de 60%. La etiología de ambas enfermedades es similar, ya que son multifactoriales y comparten varios factores de riesgo que pueden desencadenarlas, como lo son factores genéticos, biológicos o ambientales, dentro de los cuales uno de los que mantiene más cercana la relación de estas enfermedades es el factor biológico, donde una disbiosis a nivel bucal o intestinal puede comenzar con inflamación local y a su vez sistemática. Las citocinas proinflamatorias IL-23 e IL-17 y sus receptores juegan un papel muy importante en la inmunopatología de estas enfermedades. IL-23 activa y expande los clones Th17 a través de IL-23R y promueve la producción de IL-17 y RANKL; sin embargo, la IL-23R soluble puede bloquear el receptor de IL-23 al inhibir su señalización. IL-17 a través de IL-17RA puede activar fibroblastos y macrófagos que expresan RANKL que activa los precursores de osteoclastos e inicia la erosión ósea en las articulaciones y el hueso alveolar. Al igual que el receptor soluble de IL-23R, el ser soluble de IL-17RA puede bloquear a IL-17A e inhibir su señalización.
REFERENCIAS (EN ESTE ARTÍCULO)
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016; 388 (10055): 2023-2038.
Funovits J, Aletaha D, Bykerk V, Combe B, Dougados M, Emery P et al. Funovits J et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: methodological report phase I. Ann Rheum Dis. 2010; 69 (9): 1589-1595.
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: a systematic review and meta-analysis. J Adv Res. 2016; 7 (1): 1-16.
Peláez-Ballestas I, Sanin LH, Moreno-Montoya J, Alvarez-Nemegyei J, Burgos-Vargas R, Garza-Elizondo M et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl. 2011; 86: 3-8.
Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999; 4 (1): 1-6.
Lindhe J, Karring T, Lang NP. Clinical periodontology and implant dentistry. 4th ed. Oxford, UK; Malden, MA: Blackwell. 2003. p. 1044.
Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005; 83 (9): 661-669.
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol. 2017; 13 (10): 606-620.
Kobayashi T, Yoshie H. Host responses in the link between periodontitis and rheumatoid arthritis. Curr Oral Health Rep. 2015; 2: 1-8.
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014; 35 (1): 3-11.
Berthelot JM, Le Goff B. Rheumatoid arthritis and periodontal disease. Joint Bone Spine. 2010; 77 (6): 537-541.
Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007; 19 (6): 652-657.
Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008; 10 (2): 206.
Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol. 2008; 20 (11): 1361-1368.
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136 (7): 2348-2357.
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005; 6 (11): 1123-1132.
Abdi K, Singh NJ, Spooner E, Kessler BM, Radaev S, Lantz L et al. Free IL-12p40 monomer is a polyfunctional adaptor for generating novel IL-12-like heterodimers extracellularly. J Immunol. 2014; 192 (12): 6028-6036.
Kuchař M, Vaňková L, Petroková H, Cerný J, Osička R, Pelák O et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014; 82 (6): 975-989.
Paunović V, Carroll HP, Vandenbroeck K, Gadina M. Signalling, inflammation and arthritis: crossed signals: the role of interleukin (IL)-12, -17, -23 and -27 in autoimmunity. Rheumatology (Oxford). 2008; 47 (6): 771-776.
Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011; 12 (3): 247-254.
Floss DM, Klöcker T, Schröder J, Lamertz L, Mrotzek S, Strobl B et al. Defining the functional binding sites of interleukin 12 receptor beta1 and interleukin 23 receptor to Janus kinases. Mol Biol Cell. 2016; 27 (14): 2301-2316.
Kan SH, Mancini G, Gallagher G. Identification and characterization of multiple splice forms of the human interleukin-23 receptor alpha chain in mitogen-activated leukocytes. Genes Immun. 2008; 9 (7): 631-639.
Teng MW. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015. 21 (7): 719-729.
Franke M, Schröder J, Monhasery N, Ackfeld T, Hummel TM, Rabe B et al. Human and murine interleukin 23 receptors are novel substrates for a disintegrin and metalloproteases ADAM10 and ADAM17. J Biol Chem. 2016; 291 (20): 10551-1061.
Chang SH, Dong C. IL-17F: regulation, signaling and function in inflammation. Cytokine. 2009; 46 (1): 7-11.
Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011; 134 (1): 8-16.
Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004; 190 (3): 624-631.
McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol. 2005; 175 (1): 404-412.
Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008; 181 (4): 2799-2805.
Liu S, Desharnais J, Sahasrabudhe PV, Jin P, Li W, Oates BD, Shanker S et al. Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide. Sci Rep. 2016; 6: 26071.
Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013; 64 (2): 477-485.
Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal. 2013; 25 (12): 2335-2347.
Sohda M, Misumi Y, Tashiro K, Yamazaki M, Saku T, Oda K. Identification of a soluble isoform of human IL-17RA generated by alternative splicing. Cytokine. 2013; 64 (3): 642-645.
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011; 34 (2): 149-162.
Weighardt H, Jusek G, Mages J, Lang R, Hoebe K, Beutler B et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur J Immunol. 2004; 34 (2): 558-564.
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014; 29 (6): 248-257.
Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012; 122 (5): 1791-1802.
Martel-Pelletier J, Welsch DJ, Pelletier JP. Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol. 2001; 15 (5): 805-829.
Bluml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol. 2014; 36 (5): 531-540.
Himani GS, Prabhuji ML, Karthikeyan BV. Gingival crevicular fluid and interleukin-23 concentration in systemically healthy subjects: their relationship in periodontal health and disease. J Periodontal Res. 2014; 49 (2): 237-245.
Awang RA, Lappin DF, MacPherson A, Riggio M, Robertson D, Hodge P et al. Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity. Inflamm Res. 2014; 63 (12): 1001-1012.
Liukkonen J, Gürsoy UK, Könönen E, Gürsoy M, Metso J, Salminen A et al. Salivary biomarkers in association with periodontal parameters and the periodontitis risk haplotype. Innate Immun. 2018; 24 (7): 439-447.
Sadeghi R, Sattari M, Dehghan F, Akbari S. Interleukin-17 and interleukin-23 levels in gingival crevicular fluid of patients with chronic and aggressive periodontitis. Cent Eur J Immunol. 2018; 43 (1): 76-80.
Shimada Y, Tabeta K, Sugita N, Yoshie H. Profiling biomarkers in gingival crevicular fluid using multiplex bead immunoassay. Arch Oral Biol. 2013; 58 (6): 724-730.
Peña-Echeverría PA, Rodríguez-Montaño R, Ruiz-Gutiérrez AC, Martínez-Rodríguez VMC, Gómez-Meda BC, Cervantes-Cabrera JJ et al. Determinación de la concentración de IL-23 y el receptor soluble a IL-17 (IL-17RA) en suero y plasma de pacientes con periodontitis crónica y agresiva: un estudio piloto. Rev Mex Periodontol. 2018; 8 (2-3): 46-53.
Cifcibasi E, Koyuncuoglu C, Ciblak M, Badur S, Kasali K, Firatli E et al. Evaluation of local and systemic levels of interleukin-17, interleukin-23, and myeloperoxidase in response to periodontal therapy in patients with generalized aggressive periodontitis. Inflammation. 2015; 38 (5): 1959-1968.
Rivadeneyra-Burgos C, Rodríguez-Montaño R, Ruíz-Gutiérrez AC, Martínez-Rodríguez VC, Meléndez-Ruiz JL, Pita-López ML et al. Determinación de los niveles del receptor soluble de IL-23 en suero y plasma de pacientes con periodontitis crónica y agresiva. Rev Mex Periodontol. 2017; 8 (1): 5-10.
Ohyama H, Kato-Kogoe N, Kuhara A, Nishimura F, Nakasho K, Yamanegi K et al. The involvement of IL-23 and the Th17 pathway in periodontitis. J Dent Res. 2009; 88 (7): 633-638.
Vernal R, Dutzan N, Chaparro A, Puente J, Antonieta VM, Gamonal J. Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. J Clin Periodontol. 2005; 32 (4): 383-389.
Fu QY, Zhang L, Duan L, Qian SY, Pang HX. Correlation of chronic periodontitis in tropical area and IFN-gamma, IL-10, IL-17 levels. Asian Pac J Trop Med. 2013; 6 (6): 489-492.
Ruíz-Gutiérrez AC, Herrera-Mora MC, Zamora-Pérez AL, Meléndez-Ruíz JL, Martínez-Rodríguez VC, Guerrero-Velázquez C. Determinación de los niveles de IL-17 en el líquido crevicular gingival de pacientes con periodontitis crónica y agresiva. Rev Mex Periodontol. 2014; 5 (2): 46-50.
Shaker OG, Ghallab NA. IL-17 and IL-11 GCF levels in aggressive and chronic periodontitis patients: relation to PCR bacterial detection. Mediators Inflamm. 2012; 2012: 174764.
Yetkin Ay Z, Sütçü R, Uskun E, Bozkurt FY, Berker E. The impact of the IL-11:IL-17 ratio on the chronic periodontitis pathogenesis: a preliminary report. Oral Dis. 2009; 15 (1): 93-99.
Pradeep AR, Hadge P, Chowdhry S, Patel S, Happy D. Exploring the role of Th1 cytokines: interleukin-17 and interleukin-18 in periodontal health and disease. J Oral Sci. 2009; 51 (2): 261-266.
Isaza-Guzmán DM, Cardona-Vélez N, Gaviria-Correa DE, Martínez-Pabón MC, Castaño-Granada MC, Tobón-Arroyave SI. Association study between salivary levels of interferon (IFN)-gamma, interleukin (IL)-17, IL-21, and IL-22 with chronic periodontitis. Arch Oral Biol. 2015; 60 (1): 91-99.
Takahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Clin Periodontol. 2005; 32 (4): 369-374.
Liukkonen J, Gürsoy UK, Pussinen PJ, Suominen AL, Könönen E. Salivary concentrations of interleukin (IL)-1beta, IL-17A, and IL-23 vary in relation to periodontal status. J Periodontol. 2016; 87 (12): 1484-1491.
Batool H, Nadeem A, Kashif M, Shahzad F, Tahir R, Afzal N. Salivary Levels of IL-6 and IL-17 Could be an indicator of disease severity in patients with calculus associated chronic periodontitis. Biomed Res Int. 2018; 2018: 8531961.
Ozcaka O, Nalbantsoy A, Buduneli N. Interleukin-17 and interleukin-18 levels in saliva and plasma of patients with chronic periodontitis. J Periodontal Res. 2011; 46 (5): 592-598.
Johnson RB, Wood N, Serio FG. Interleukin-11 and IL-17 and the pathogenesis of periodontal disease. J Periodontol. 2004; 75 (1): 37-43.
Kageyama Y, Kobayashi H, Kato N. Infliximab treatment reduces the serum levels of interleukin-23 in patients with rheumatoid arthritis. Mod Rheumatol. 2009; 19 (6): 657-662.
Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther. 2009; 11 (4): R113.
Dalila AS, Mohd Said MS, Shaharir SS, Asrul AW, Low SF, Shamsul AS et al. Interleukin-23 and its correlation with disease activity, joint damage, and functional disability in rheumatoid arthritis. Kaohsiung J Med Sci. 2014; 30 (7): 337-342.
Rasmussen TK, Andersen T, Hvid M, Hetland ML, Hørslev-Petersen K, Stengaard-Pedersen K et al. Increased interleukin 21 (IL-21) and IL-23 are associated with increased disease activity and with radiographic status in patients with early rheumatoid arthritis. J Rheumatol. 2010; 37 (10): 2014-2020.
Andersen T, Hvid M, Johansen C, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K et al. Andersen T et al. Interleukin-23 in early disease development in rheumatoid arthritis. Scand J Rheumatol. 2015; 44 (6): 438-442.
Melis L, Vandooren B, Kruithof E, Jacques P, De Vos M, Mielants H, Verbruggen G et al. Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann Rheum Dis. 2010; 69 (3): 618-623.
Hillyer P, Larché MJ, Bowman EP, McClanahan TK, de Waal Malefyt R, Schewitz LP et al. Investigating the role of the interleukin-23/-17A axis in rheumatoid arthritis. Rheumatology (Oxford). 2009; 48 (12): 1581-1589.
Van Baarsen LG, Lebre MC, Van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH et al. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther. 2014; 16 (4): 426.
Gümüş P, Buduneli E, Bıyıkoğlu B, Aksu K, Saraç F, Nile C et al. Gingival crevicular fluid, serum levels of receptor activator of nuclear factor-κB ligand, osteoprotegerin, and interleukin-17 in patients with rheumatoid arthritis and osteoporosis and with periodontal disease. J Periodontol. 2013; 84 (11): 1627-1637.