2018, Número S2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)
Una historia de éxito: biodiversidad a través de fósiles
Cevallos-Ferriz SRS, Huerta VAR
Idioma: Español
Referencias bibliográficas: 59
Paginas: 69-84
Archivo PDF: 1630.70 Kb.
RESUMEN
Los organismos se desarrollan y lo que evoluciona es el genoma; además, si la innovación funciona sigue adelante, si no
se selecciona. Así, la evolución es la acumulación sucesiva de eventos favorables. Estos últimos quedaron registrados en
la morfología y anatomía de los organismos conservados en las rocas, como fósiles. Mediante la comparación de plantas
fósiles y actuales, se reconocen varios episodios sobresalientes que evidencian la secuencia de modificaciones de los
organismos fotosintéticos, iniciando en el Precámbrico y hasta el Reciente. El primero, comprende desde el origen de
la vida hasta la colonización de la atmósfera por la biósfera; mencionando a los primeros organismos planctónicos y/o
nectónicos, incluyendo a las primeras biopelículas (se refiere a las comunidades de microorganismos que precipitan o
atrapan minerales, para formar estructuras órganos-sedimentarias) y costras biológicas milimétricas, hasta la intrusión de
la atmósfera en donde las plantas alcanzan alturas de unos cuantos decímetros. La colonización de la atmósfera por la
biósfera con fuerte alteración de la litósfera marca un segundo episodio, en el que se encuentran plantas homospóricas,
con embrión unipolar, cambium vascular unifacial y micrófilas, pero también plantas centimétricas que se desarrollan como
arbustos y árboles de hasta 20 m de altura. Un tercer episodio lo caracterizan plantas con semillas desnudas, cambium
vascular bifacial, embrión bipolar y megáfilas, además de una biología reproductiva fascinante y distinta a la de las
plantas actuales. En el cuarto capítulo de esta historia la vida llega a su máximo desarrollo con la aparición de un mundo
multicolor plagado de aromas, que cambia las relaciones entre plantas y animales, con una reingeniería relacionada
con el uso óptimo del agua para completar los ciclos de vida. Los cuatro episodios anteriores se representan en dioramas,
mostrando “bosques” o “selvas” semejantes a las actuales, pero con secretos de su biología que sorprenden por originales
y distintos. Finalmente, los eventos presentados se relacionan con la economía del uso del agua que actúa en favor de los
ciclos de vida con menor dependencia del agua y facilitan la colonización de zonas interiores y altas de los continentes,
reflejando así una historia de éxito.
REFERENCIAS (EN ESTE ARTÍCULO)
Ackerly, D.D. (2003). Community assembly, niche conservatism and adaptive evolution in changing environments. International Journal of Plant Sciences,164, S165–184. DOI: 10.1086/368401
Ackerly, D.D. (2009). Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr., 36,1221– 1233. DOI: 10.1111/j.1365-2699.2009.02097.x
Agrawal, A.A. (2007). Macroevolution of plant defense strategies. Trends Ecol. Evol., 22, 103–109.
Axelrod, D., Arroyo, M.T.K. & Raven, P.H. (1991). Historical development of temperate vegetation in the Americas. Revista Chilena de Historia Natural, 64, 413–446. https://scholar. google.com.mx/scholar?q=Historical+development+of+tem perate+vegetation+in+the+americas.+DOI&btnG=&hl=es& as_sdt=0%2C5&as_vis=1
Banks, H. P. (1992).The classification of early land plants revisited. En: Proceedings of the Birbal Sahni Birth Centenary Palaeobotanical Conference, vol. 22 (eds. B. S. Venkatachala, K. P. Jain & N. Awasthi), pp. 49- 63 (Lucknow: India.
Bateman, R. M. & DiMichele, W. A. (1994). Dimichele. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews, 69, 345–417. DOI: 10.1111/j.1469-185X.1994.tb01276.x
Becerra, J.X. (2005).Timing the origin and expansion of the Mexican tropical dry forest. Proceedings of the National Aacademy of Science, 102, 10919–10923. DOI: 10.1073/pnas.0409127102
Behrensmeyer, A.K., Damuth, J.D., DiMichele, W.A., Potts, R., Sues, H.D. & Wing, S.L. (eds.) (1992). Terrestrial Ecosystems through Time: The Evolutionary Paleoecology of Terrestrial Plants and Animals. (University of Chicago Press, Chicago & London).
Bennici, A. (2008). Origin and early evolution of plants. Communicative & Integrative Biology, 1(2), 212–218 . http://www. landesbioscience.com/journals/cib/article/6987
Benson, M. (1904). Telangium scotti, a new species of Telangium (Calymatotheca) showing structure. Annals of Botany, 18, 161-176.
Benton, M.J. & Emerson, B.C. (2007).How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenies. Palaeontology, 50, 23–40. DOI: 10.1111/j.1475-4983.2006.00612.x
Blank, C.E. & Sánchez-Baracaldo, P. (2010).Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology, 8(1), 1–23 . DOI: 10.1111/j.1472-4669.2009.00220
Bond, W.J. & Scott, A.C. (2010). Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 188,1137–1150. DOI: 10.1111/j.1469-8137.2010.03418.x
Bowler, F.R., Chan, K.,Duffy, C.D.,Gerland, B., Islam,S.,Powner, M.W.,Sutherland, J.D. & Xu, J. (2013).Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nature Chemistry, 5, 383–389. DOI:10.1038/ nchem.1626
Brodribb, T.J. & Feild, TS. (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13, 175–183. DOI: 10.1111/j.1461-0248.2009.01410.x
Burchfield, J. D. (1998).The age of the Earth and the invention of geological time. En (Eds.) Blundell, D. J. & Scott, A. C. Lyell: the Past is the Key to the Present. (137-143) (Geological Society. Special Publications, 143, London. DOI:10.1144/ GSL.SP.1998.143.01.12
Cadotte, M.W., Dinnage, R. & Tilman, D. P. (2012). Hylogenetic diversity promotes ecosystem stability. Ecology, 93:S223–233 . DOI: 10.1371/journal.pone.0072561
Canfield, D.E. (2005). The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science, 33(1), 1–36. DOI: 1.1146/annurev. earth.33.092203.122711
Canfield, D.E., Rosing, M.T. & Bjerrum, C. (2006). Early anaerobic metabolisms. Philosophical Transations of the Royal Society of London, B Biological Sciences, 361(1474), 1819-1836 . DOI: 10.1098/rstb.2006.1906.
Cornwell, W.K., Westoby, M., Falster, D.S., FitzJohn, R.G. & O’Meara, B.C.l (2014). Functional distinctiveness of major plant lineages. Journal of Ecology, 102, 345–356. DOI: 10.1111/1365- 2745.12208
Crepet, W.L., Nixon, K.C. & Gandolfo, M.A. (2004). Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany, 91, 1666–1682. DOI:10.3732/ ajb.91.10.1666
Decombeix, A.L., Galtier, G. & Meyer-Berthaud, B. (2014). Secondary Phloem in Early Carboniferous Seed Plants: Anatomical Diversity and Evolutionary Implications. International Journal of Plant Sciences, 175(8), 891-910. DOI: 10.1086/677650
Decombeix, A.L., Moment, N. & Meyer-Berthaud, B. (2016). Evolution of secondary xylem and phloem based on the Paleozoic fossil record. Botany. http://2016.botanyconference.org/engine/ search/index.php?func=detail&aid=76r
Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., & Rowe, T. (1989). The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics, 20, 431–460. DOI:10.1146/annurev.es.20.110189.002243.
Field, T.S., & Arens, N.C. (2005). Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytologist, 166(2), 355–704. DOI: 10.1111/j.1469-8137.2005.01333.x
Fine, P.V.A. (2015). Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecolology Evolution and Systematics,46, 369–392. DOI: 10.1146/annurevecolsys-112414054102
Friedman, W.E., & Cook, M.E. (2000). The origin and early evolution of tracheids in vascular plants. Philosophical Transactions of the Royal Society of London, B 355, 857-868.
Gerhart, L.M., & Ward, J.K. (2010). Plant responses to low [CO2 ] of the past. New Phytoloist., 188, 674–695 . DOI: 10.1111/j.1469- 8137.2010.03441.x
Graham, A. (2011). The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98, 336–351. DOI:10.3732/ajb.1000353
Habicht, K.S., Gade, M., Thamdrup, B., Berg. P. & Canfield, D.E. (2002). Calibration of sulfate levels in the archean ocean. Science, 298(5602), 2372–2374. DOI: 10.1126/science.1078265
Hedberg, H.D. (1965). Earth History and the Record in the Rocks. Proceedings of the American Philosophical Society, 109(2), 99-104. http://www.jstor.org/stable/985785
Hernández, A.R., & Piccirilli, J.A. (2013). Chemical origins of life: Prebiotic RNA unstuck. Nature Chemistry, 5, 360–362. DOI:10.1038/nchem.1636
Hsiao, Ch., Chou, I-Ch., Okafor, C.D., Bowman, J.C., O’Neill, E.B., Athavale, S.S., Petrov, A.S., Hud, N.V., Wartell, R.M., Harvey, S.C. & Williams, L.D. (2013). RNA with iron(II) as a cofactor catalyses electron transfer. Nature Chemistry, 5, 525–528. DOI:10.1038/nchem.1649
Kappler, A., Pasquero, C., Konhauser, K.O. & Newman, D.K. (2005). Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33(11), 865– 868. DOI: 10.1130/G21658.1
Kato, M. (2010). Evolution of primitiove land plants: A review. Bulletin of the National Museum of Natural Science, Ser. B, 36(1), 1–11.
Kenrick, P. (2000). The relationship of Vasculra plants. Philosophical Transactions: Biological Sciences, 355(1398), 847-855. DOI: 10.1098/rstb.2000.0619
Kenrick, P., & Crane, P.R. (1997). The origin and early diversification of land plants: a cladistic study. Smithsonian Series in Comparative Evolutionary Biology (Smithsonian Institute Press, Washington, DC, USA).
Knauth, L.P. (2005). Temperature and salinity history of the Precambrian ocean: Impli- cations for the course of microbial evolution. Palaeogeography, Palaeoclimatolog, Palaeoecology, 219(1- 2), 53–69. DOI:10.1016/j.palaeo.2004.10.014
Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., Steele, A., & Mertzman, A. (2005). The problem of deep carbon—An Archean paradox. Precambrian Research., 143(1–4), 1-22. DOI.org/10.1016/j.precamres.2005.09.003.
Linkies, A., Graeber, K., Knight, C., & Leubner-Metzger, G. (2010). The evolution of sedes. New Phytologist, 186, 817–831. DOI: 10.1111/j.1469-8137.2010.03249.x
Márquez Guzmán, J., Collazo Ortega, M., Martínez Gordillo, M., Orozco Segovia, A., & Vázquez Santana, S. (2013). Biología de angiospermas. Facultad de Ciencias, UNAM, Coordinación de la Investigación Científica.
Mojzsis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P., & Friend, C.R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55-59.
Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., & Chivas, A.R. (2016). Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537, 535–538 . DOI:10.1038/nature19355
Oliver, F.W., & Scott, D.H. (1904). On the structure of the Paleozoic seed Lagenostoma lomaxi, with a statement of the evidence upon which it is referred to Lyginodendron. Phylosophical Transactions of the Royal Society of London, 197B, 193-247.
Remy, W., & Remy, R. (1980). Devonian gametopgytes with anatomical preerved gamentangia. Science, 208(4441), 296- 296. DOI:10.1126/science.208.4441.295
Rothwell, G.W., & Serbet, R. (1994). Lignophyte Phylogeny and the Evolution of Spermatophytes: A Numerical Cladistic Analysis. Systematic Botany, 19(3), 443-482. DOI:10.2307/2419767
Simpson, M.G. (2010). Plant systematics. (Academic Press, Amsterdam).
Smith, D.L. (1964). Three fructifications from the Scottish Lower Carboniferous. Palaeontology, 5, 225-237.
Stewart, W.N., & Rothwell, G.W. (1993).Paleobotany and the Evolution of Plants. (Cambridge University Press, Cambridge).
Taylor, E.L. (1990). Phloem evolution:an apparaissal base don fossil record. En: (eds.) Behnke, H.D. & Solund, R.D., Sieve elements, comparative Structuiure, Induction and Development. 285-297. (Springer-Verlag, Berlin). DOI: 10.1007/978-3-642-74445-7
Taylor, E.L., Taylor, T.N. & Krings, M. (2009). Paleobotany: The Biology and Evolution of Fossil Plants, Second Edition (Academic Press, Burlington, MA, USA). https://books.google. es/books?id=_29tNNeQKeMC
Tomescu, A.M.F. (2009). Megaphylls, microphylls and the evolution of lead development. Trends in Plant Sciences, 14(1), 5-15 . http://doi.org/10.1016/j.tplants.2008.10.008
Walker, J.C.G. (1987). Was the Archaean biosphere upside down? Nature, 329(6141), 710–712. DOI:10.1038/329710a0 55 .
Walton, J. (1953a). An introduction to the study of Fossil Plants. (Adam & Charles Black, London).
Walton, J. (1953b). The evolution of the ovule in the pteridosperms. Advancements of Sciences, 38, 223-230.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292 (5517), 686–693. DOI: 10.1126/ science.1059412
Zimmerman, W. (1938). Die Telomtheorie. Biologie: Montasschrift zur Wahrung der Belange Deutschen Biologen, 7, 385-391.
Zimmerman, W. (1952). Main results of the “telome theory”. Paleobotanist, 1, 456-470.