2018, Número 2
<< Anterior Siguiente >>
Gac Med Mex 2018; 154 (2)
Niveles de referencia de osteocalcina en población sana de México
Nieto-Flores J, Villafán-Bernal JR, Rivera-León EA, Llamas-Covarrubias IM, González-Hita ME, Alcalá-Zermeno JL, Sánchez-Enríquez S
Idioma: Español
Referencias bibliográficas: 34
Paginas: 185-189
Archivo PDF: 174.73 Kb.
RESUMEN
Introducción: Se ha demostrado que la osteocalcina tiene una relación inversa con la glucemia, resistencia a la insulina
y adiposidad.
Objetivo: Determinar la concentración sérica normal de osteocalcina en adultos sanos mexicanos y compararlos
con los reportados en otras poblaciones.
Método: Se determinó la concentración sérica de osteocalcina carboxilada
y pobremente carboxilada en 100 adultos sanos mediante inmunoensayo enzimático; se calculó la concentración de
osteocalcina total. Se hizo una comparación descriptiva con valores de otras poblaciones reportadas en la literatura.
Resultados: Las medianas de las concentraciones de osteocalcina carboxilada y pobremente carboxilada fueron 3.22 ng/mL
y 1.61 ng/mL, respectivamente; la media de osteocalcina total fue 7.40 ± 5.11 ng/mL. No hubo diferencia significativa entre
los valores de osteocalcina total en nuestra población y los de poblaciones en las que se utilizaron métodos de cuantificación
similares al nuestro.
Conclusión: La concentración sérica promedio de osteocalcina total en la población analizada fue de
7.40 ng/mL. Las variaciones sutiles entre poblaciones son atribuibles a factores genéticos y poblacionales, sin embargo, el
método de cuantificación fue el único que se comprobó influye significativamente en los niveles de osteocalcina en poblaciones
sanas.
REFERENCIAS (EN ESTE ARTÍCULO)
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007:130(3):456-469.
Li J, Zhang H, Yang C, Li Y, Dai Z. An overview of osteocalcin progress. J Bone Miner Metab. 2016;34(4):367-379.
Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford). 2016 ;55 (10):1714-1725.
Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell. 2013:155(1):228-241.
Power MJ, Fottrell PF. Osteocalcin: diagnostic methods and clinical applications. Crit Rev Clin Lab Sci. 1991:28(4):287-335.
Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int.2009:20(6):843-851.
Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005:26(4):97-122.
Seibel MJ. Biochemical markers of bone turnover: Part II: Clinical applications in the management of osteoporosis. Clin Biochem Rev. 2006:27(3):123-138
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. JAMA. 2003:289(19):2560-2572.
Organización Mundial de la Salud. Dieta, nutrición y prevención de enfermedades crónicas. Serie de Informes Técnicos Núm. 797. Ginebra, Suiza: OMS: 1990.
National Institutes of Health. Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). NIH Publication 01-3670. Bethesda, Md: National Institutes of Health; 2001.
Price PA, Lothringer JW, Nishimoto SK. Absence of the vitamin K-dependent bone protein in fetal rat mineral. Evidence for another gamma- carboxyglutamic acid-containing component in bone. J Biol Chem. 1980:255(7):2938-2942.
Koyama N, Ohara K, Yokota H, Kurome T, Katayama M, Hino F, et al. A one step sandwich enzyme immunoassay for γ-carboxylated osteocalcin using monoclonal antibodies. J Immunol. Methods. 1991;139(1):17-23.
Garnero P, Grimaux M, Demiaux B, Preaudat C, Seguin P, Delmas PD. Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J Bone Miner Res. 1992;7(12):1389-1398.
Vergnaud P, Garnero P, Meunier PJ, Bréart G, Kamihagi K, Delmas PD. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab. 1997:82(3):719-724.
Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia. 1988:31(12):892-895.
Akin O, Göl K, Aktürk M, Erkaya S. Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. Gynecol Endocrinol. 2003:17(1):19-29.
Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin- dependent diabetes mellitus. Calcif Tissue Int. 1998:63(2):107-111.
Achemlal L, Tellal S, Rkiouak F, Nouijai A, Bezza A, Ghafir D, et al. Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol. 2005:24(5):493-496.
Dobnig H, Piswanger-Sölkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab. 2006:91(9):3355-3363.
Cutrim DM, Pereira FA, De-Paula FJ, Foss MC. Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus. Braz J Med Biol Res. 2007:40(2):221-227.
Shankar S, Hosking DJ. Biochemical assessment of Paget’s disease of bone. J Bone Miner Res. 2006:21(Suppl 2):P22-P27.
Coleman R, Brown J, Terpos E, Lipton A, Smith MR, Cook R, et al. Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev. 2008;34(7):629-639.
Magni P, Macchi C, Sirtori CR, Corsi-Romanelli MM. Osteocalcin as a potential risk biomarker for cardiovascular and metabolic diseases. Clin Chem Lab Med. 2016;54(10):1579-1587.
Villafán-Bernal JR, Llamas-Covarrubias MA, Muñoz-Valle JF, Rivera- León EA, González-Hita ME, Bastidas-Ramírez BE, et al. A cut-point value of uncarboxylated to carboxylated index is associated with glycemic status markers in type 2 diabetes. J Investig Med. 2014:62(1):33-36.
Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA. Genetic factors in bone turnover. J Clin Endocrinol Metab. 1991:72(4):808-813.
Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989:69(3):990-1047
O’Connor E, Molgaard C, Michaelsen KF, Jakobsen J, Cashman KD. Vitamin D-vitamin K interaction: effect of vitamin D supplementation on serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, in Danish girls.Br J Nutr. 2010;104(8):1091-1095.
Stroud ML, Stilgoe S, Stott VE, Alhabian O, Salman K. Vitamin D-A review. Aust Fam Physician. 2008:37(12):1002-1005.
Giton F, Caron P, Bérubé R, Bélanger A, Barbier O, Fiet J. Plasma estrone sulfate assay in men: Comparison of radioimmunoassay, mass spectrometry coupled to gas chromatography (GC-MS), and liquid chromatography- tandem mass spectrometry (LC-MS/MS). Clin Chim Acta. 2010;411(17-18):1208-1213.
Leguin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415-2418.
Carrozza C, Corsello SM, Paragliola RM, Ingraudo F, Palumbo S, Locantore P, et al. Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing’s syndrome. Ann Clin Biochem. 2010;47(Pt 3):228-232.
Lee AJ, Hodges S, Eastell R. Measurement of osteocalcin. Ann Clin Biochem. 2000;37(Pt 4):432-446.
Levinger JD, Zajac EG. Osteocalcin, undercarboxylated osteocalcin, and glycemic control in human subjects. En: Karsenty G. Translational endocrinology of bone. EE. UU.: Elsevier; 2013.