2018, Número 1
<< Anterior Siguiente >>
Rev Mex Neuroci 2018; 19 (1)
Una nueva vía de drenaje cerebral: el sistema glinfático. Revisión histórica y conceptual
Martínez-Tapia RJ, Estrada-Rojo F, Hernández-Chávez AA, Barajas-Martínez A, Flores-Avalos LA, Chavarría A, Navarro L
Idioma: Español
Referencias bibliográficas: 53
Paginas: 104-116
Archivo PDF: 333.00 Kb.
RESUMEN
Por más de 100 años los trabajos realizados por Santiago Ramón y
Cajal hicieron que los estudios del sistema nervioso se enfocaran
en una sola célula, la neurona, generándose una visión de tipo
“neurocéntrica” y provocando que se desviara la mirada de otros
componentes celulares importantes del tejido nervioso como la
neuroglia. Al mismo tiempo, avances importantes en el campo de
la inmunología, terminaban por consolidar conceptos como el de
barrera hematoencefálica que llevaron a considerar al sistema
nervioso como un sitio “inmunológicamente privilegiado”, por lo
que las investigaciones sobre la interacción entre estos sistemas
quedaron en un plano secundario.
Actualmente el avance científico-tecnológico ha permitido
mostrar que, si bien la neurona continúa siendo un componente
importante, tanto morfológico como funcional, no es la única célula
de la que depende el correcto funcionamiento del sistema nervioso.
Recientemente se ha descubierto el sistema glinfático, una vía de
drenaje cerebral que depende del adecuado funcionamiento de la
neuroglia y en especial de los astrocitos. Este sistema de drenaje
amerita prestarle gran atención si se quiere conocer de manera
integral la forma en cómo funciona el sistema nervioso y su interacción
con el sistema inmune.
Este trabajo pretende mostrar el actual estado del arte en lo que se
refiere al conocimiento del sistema glinfático y cómo, por un lado,
está cambiando los paradigmas de estudio, y por otro está dando a
luz a varios cuestionamientos que estaban obscuros a raíz de este
enfoque “neurocentrista”.
REFERENCIAS (EN ESTE ARTÍCULO)
Mascagni P, Bellini GB. Istoria Completa Dei Vasi Linfatici.Vol. II Florence: Presso Eusebio Pacini e Figlio. 1816: p. 195.
Lukić IK, Glunčić V, Ivkić G, Hubenstorf, Marušić A. Virtual dissection: a lesson from the 18th century. Lancet. 2003; 362(9401): 2110–2113.
Di Matteo B, Tarabella V, Filardo G, Viganò A, Tomba P, Kon E, Marcacci M. Art in Science: Giovanni Paolo Mascagni and the Art of Anatomy. Clin Orthop Relat Res. 2015; 473(3): 783–788.
Key A, Retzius, G. Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson och Wallin. 1875.
Virchow, R. Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Frankfurt a. M: Meidinger. 1856.
Somjen GG. Nervenkitt: Notes on the history of the concept of neuroglia. Glia. 1988; 1(1): 2–9.
Golgi C. Contribuzione alla fina Anatomia degli organi centrali del sistema nervosos. Riv Clin di Bol. 1871 Vol. II, 11: 371–380.
Lenhossék M. Der feinere Bau des Nervensystems im Lichte neuester Forschungen. Fischer’s Medicinische Buchhandlung. 1893.
Andriezen WL. The Neuroglia Elements in the Human Brain. Br Med J. 1893; 2(1700): 227–230.
Andriezen WL. On a system of fibre-like cells surrounding the blood vessels of the brain of man and mammals, and its physiological significance. Int Monatsschr Anat Physiol. 1893; 10: 532–540.
Ramón y Cajal S. Capítulo VIII Neuroglia. In: Ramón y Cajal S, ed. Textura del sistema nervioso del hombre y de los vertebrados. Gobierno de Aragón. Departamento de Cultura y Turismo 2002: 176–195.
Ribatti D, Nico B, Crivellato, E, Artico M. Development of the blood-brain barrier: A historical point of view. Anat Rec B New Anat. 2006; 289(1): 3–8.
Goldmann E. Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der ‘vitalen Färbung’. Beitr Klin Chirurz. 1909; 64: 192–265.
Goldmann E. Vitalfärbung am Zentralnervensystem. Beitrag zur Physioathologie des Plexus Chorioideus und der Hirnhäute. Abh Preuss Akad Wissensch, Physkol Mathem Klasse. 1913; 1: 1–60.
Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol. 2007; 28: 5–11.
Liddelow SA. Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS. 2011; 8: 1-16.
Lewandowsky M. Zur lehre der cerebrospinal flüssigkeit. Z Klin Medizin. 1900; 40: 480–494.
Saunders NR, Dreifuss JJ, Dzi egielewska KM, Johansson PA, Habgood MD, Møllgård K, Bauer HC. The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history. Front Neurosci. 2014; 8(404): 1–26.
De Robertis E, Gerschenfeld HM. Submicroscopic Morphology and Function of Glial Cells. Int Rev Neurobiol. 1961; 3: 1–65.
Gray EG. Ultra-structure of synapses of the cerebral cortex and of certain specializations of neuroglial membranes. The Electron Microscope in Anatomy. (1961) Eds. Boyd JD, Johnson FR, Lever JD. London: Edward Arnold.
Reese TS, & Karnovsky MJ. Fine structural localizatin of blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967; 34(1): 207–217.
Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948; 29(1): 58–69.
Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol. 1977; 25: 1–54.
Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today. 1996; 2(3): 106–113.
Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci. 2015; 38(10): 598–608.
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016; 15(4): 275–292.
Krizbai I, Wilhelm I, Bauer HC, Bauer H. The role of glia in the formation and function of the Blood- Brain barrier. In: Kettenmann H. & Ransom BR, eds. Neuroglia. 3rd ed. Oxford, England Oxford UniversityPress 2013: 417–429.
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005; 57(2): 173–185.
Lecrux C, Hamel E. The neurovascular unit in brain function and disease. Acta Physiol. (Oxf). 2011; 203(1): 47–59.
Muoio V, Persson PB, Sendeski MM. The neurovascular unit – concept review. Acta Physiol. (Oxf). 2014; 210(4): 790-798.
Iadecola C. The Neurovasculr Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96(1): 17–42.
Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017; 18: 123–131.
Iliff JJ & Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013; 44: S93-5.
Loukas M, Bellary SS, Kuklinski M, Ferrauiola J, Yadav A, Shoja MM, et al. The lymphatic system: a historical perspective. Clin Anat. 2011; 24(7): 807–816.
Jaramillo-Magaña JJ. Metabolismo cerebral. Anestesiol en Neurocir. 2013; 36: 183–185.
Glasby MA & Myles LM. Applied physiology of the CNS. Surg. 2005; 23: 7–12.
Sykova E & Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008; 88: 1277–1340.
Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005; 2, 6: 1–11.
Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992; 2: 269–276.
Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992; 13: 507–512.
Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014; 37(11): 620–628.
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015; 40: 2583–2599.
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013; 93(4): 1543–62.
Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare Ø, Laake P, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci. U S A. 2011; 108(43): 17815–20.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012; 4(147): 147ra111.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013; 342(6156): 373–377.
Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013; 16(6): 518–523.
Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015; 35(2): 518–526.
Martinez-Vargas M, Estrada-Rojo F, Tabla-Ramon E, Navarro-Argüelles H, Ortiz-Lailzon N, Hernández-Chávez A, et al. Sleep deprivation has a neuroprotective role in a traumatic brain injury of the rat. Neurosci Lett. 2012; 529(2): 118–122.
Morales Gómez, J. J. Papel del sistema canabinérgico en la variación diurna de la neuroprotección frente a un traumatismo craneoencefálico. (Tesis de Maestría en Ciencias Biológicas) 2013. Universidad Nacional Autónoma de México Ciudad de México.
Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013; 11: 107.
Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013; 3: 2582.
Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. 2015; 6: 6807.