2017, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2017; 36 (4)
Efectos inmunológicos y adyuvantes de las proteínas Cry1A efectos inmunológicos y adyuvantes de las proteínas Cry1A
Torres MM, Moreno FL
Idioma: Español
Referencias bibliográficas: 52
Paginas: 118-128
Archivo PDF: 295.80 Kb.
RESUMEN
Las proteínas Cry1A de
Bacillus thuringiensis, pudieran ser utilizadas como una estrategia
para incrementar la eficacia de las vacunas debido a que; son inmunogénicas
y son adyuvantes efectivos capaces de incrementar protección a nivel sistémico y
de mucosas, no son tóxicas en vertebrados y presentan bajos costos de producción.
Esta revisión resume los estudios reportados hasta el momento sobre las propiedades
inmunogénicas de las proteínas Cry1A..
REFERENCIAS (EN ESTE ARTÍCULO)
De Bortoli S A, Vacari A M, Polanczyk RA, Carolina A, Veiga P, Goulart R M (2017) “Bacillus thuringiensis and Lysinibacillus sphaericus” pp. 67–77.
Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–31.
Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22.
Gill SS, Cowles EA, Pietrantonio PV (1992) The Mode of Action of Bacillus thuringiensis Endotoxins. Ann Rev Entomol 37:615–34.
Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis Crystal Toxins and Mechanism of Action. Adv Insect Physiol 39-87 p.
Tabashnik BE, Zhang M, Fabrick J a., Wu Y, Gao M, Huang F (2015) Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Scientific Reports. Nature Publishing Group 5:15107.
Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 103:9897–902.
Rubio-Infante N, Moreno-Fierros L (2016) An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J Appl Toxicol 36:630–48.
Moreno-Fierros L, Garcia N, Gutierrez R, Lopez- Revilla R, Vazquez-Padron RI (2000) Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect 2:885–90.
Moreno-Fierros L, Pérez-Ordóñez I, Palomar- Morales M (2002) Slight influence of the estrous cycle stage on the mucosal and systemic specific antibody response induced after vaginal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis in mice. Life Sci 71:2667–80.
Vazquez-Padron RI, Moreno-Fierros L, Neri- Bazan L, de la Riva GA, Lopez-Revilla R (1999) Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sci 64:1897–912.
Esquivel-Perez R, Moreno-Fierros L (2005) Mucosal and systemic adjuvant effects of cholera toxin and Cry1Ac protoxin on the specific antibody response to HIV-1 C4/V3 peptides are different and depend on the antigen co-administered. Viral Immunol 18:695–708.
Vázquez RI, Moreno-Fierros L, Neri-Bazán L, De La Riva G a., López-Revilla R, (1999) Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scand J Immunol 49:578–84.
Moreno-Fierros L, Ruiz-Medina EJ, Esquivel R, Lopez-Revilla R, Pina-Cruz S (2003) Intranasal Cry1Ac protoxin is an effective mucosal and systemic carrier and adjuvant of Streptococcus pneumoniae polysaccharides in mice. Scand J Immunol 57:45–55.
Gonzalez-Gonzalez E, Garcia-Hernandez AL, Flores-Mejia R, Lopez-Santiago R, Moreno- Fierros L (2015) The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. Vet Microbiol 175:382–8.
Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis: Insects and Beyond. Nat Biotech Nature Pub Co 10:271–5.
Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial Insecticidal Toxins. Crit Rev Microbiol 30:33–54.
Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2016) Critical Reviews in Microbiology Bacterial Insecticidal Toxins Bacterial Insecticidal Toxins. Bacterial Insecticidal Toxins. Crit Rev Microbiol 7828:33–5433.
Global Status of Commercialized Biotech/GM Crops (2016).
Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9: 283–300.
De Maagd R a., Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–9.
Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–13.
Samples JR, Buettner H (1983) Ocular infection caused by a biological insecticide. J. Infect. Dis. 148:614.
Green M, Heumann M, Sokolow R, Foster LR, Bryant R, Skeels M (1990) Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiology study, Oregon, 1985-86. Am J Public Health 80:848–52.
Bernstein IL, Bernstein JA, Miller M, Tierzieva S, Bernstein DI, Lummus Z (1999) Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environ. Health Perspect 107:575–82.
Prasad SSS V., Shethna YI (1976) Mode of Action of a Purified Antitumor Protein from the Proteinaceous Crystal of Bacillus thuringiensis subsp. thuringiensis on Yoshida Ascites Sarcoma Cells. Antimicrob Agents Chemother 10:293–8.
Prasad SS, Shethna YI (1975) Enhancement of immune response by the proteinaceous crystal of Bacillus thuringiensis var thuringiensis. Biochem Biophys Res Commun 62:517–23.
Moreno-Fierros L, García N, Gutiérrez R, López-Revilla R, Vázquez-Padrón RI, Garcia N (2000). Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect 2:885–90.
Esquivel-Perez R, Moreno-Fierros L, Esquivel- Pérez R, Moreno-Fierros L (2005) Mucosal and systemic adjuvant effects of cholera toxin and Cry1Ac protoxin on the specific antibody response to HIV-1 C4/V3 peptides are different and depend on the antigen coadministered. Viral Immunol 18:695–708.
Moreno-Fierros L, Pérez-Ordóñez I, Palomar- Morales MM, Perez-Ordonez I, Palomar-Morales MM (2002) Slight influence of the estrous cycle stage on the mucosal and systemic specific antibody response induced after vaginal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis in mice. Life Sci 18:2667–80.
Guerrero GG, Russell WM, Moreno-Fierros L (2007) Analysis of the cellular immune response induced by Bacillus thuringiensis Cry1A toxins in mice: Effect of the hydrophobic motif from diphtheria toxin. Mol Immunol 44:1209–17.
Rojas-Hernández S, Rodríguez-Monroy M a., López-Revilla R, Reséndiz-Albor A ., Moreno- Fierros L (2004) Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun 72:4368– 75.
Legorreta-Herrera M, Meza RO, Moreno- Fierros L (2010) Pretreatment with Cry1Ac protoxin modulates the immune response, and increases the survival of Plasmodiuminfected CBA/Ca mice. J Biomed Biotechnol 2010:198921.
Ibarra-Moreno S, García-Hernández A. L, Moreno-Fierros L (2014) Coadministration of protoxin Cry1Ac from Bacillus thuringiensis with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunol 36:266–70.
Jarillo-Luna A., Moreno-Fierros L, Campos- Rodriguez R, Rodriguez-Monroy MA, Lara- Padilla E, Rojas-Hernandez S (2008). Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunol 30:31–8.
Carrasco-Yepez M, Rojas-Hernandez S, Rodriguez-Monroy MA, Terrazas LI, Moreno- Fierros L (2010) Protection against Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebic lysates is dependent on the STAT6 Th2 response. Parasite Immunol 32:664–70.
Rodriguez-Monroy M a., Moreno-Fierros L (2010) Striking activation of NALT and nasal passages lymphocytes induced by intranasal immunization with Cry1Ac protoxin. Scand J Immunol 71:159–68.
Lavelle EC (2005) Generation of improved mucosal vaccines by induction of innate immunity. Cell Mol Life Sci 62:2750–70.
Williams NA, Hirst TR, Nashar TO (1999) Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol Today 20:95–101.
Moreno-Fierros L, García-Hernández ALAL, Ilhuicatzi-Alvarado D, Rivera-Santiago L, Torres-Martínez M, Rubio-Infante NN (2013) Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-α cytokines. Int Immunopharmacol 17:1051–66.
Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–4.
Knight PJ, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–36.
Nagamatsu Y, Koike T, Sasaki K, Yoshimoto A, Furukawa Y (1999) The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett 460:385– 90.
Vázquez-Padrón RI, Gonzáles-Cabrera J, García-Tovar C, Neri-Bazan L, Lopéz-Revilla R, Hernández M (2000) Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem Biophys Res Commun 271:54–8.
Rubio-Infante N, Ilhuicatzi-Alvarado D, Torres- Martínez M, Reyes-Grajeda JP, Nava-Acosta R, González-González E (2017) The Macrophage Activation Induced by Bacillus thuringiensis Cry1Ac Protoxin Involves ERK1/2 and p38 Pathways and the Interaction with Cell- Surface-HSP70. J Cell Biochem Jun 13.
Guerrero GG, Dean DH, Moreno-Fierros L (2004) Structural implication of the induced immune response by Bacillus thuringiensis Cry proteins: role of the N-terminal region. Mol Immunol 41:1177–83.
Guerrero GG, Moreno-Fierros L (2007) Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope. Scand J Immunol 66:610–8.
Adel-Patient K, Guimaraes VD, Paris A, Drumare MF, Ah-Leung S, Lamourette P, Nevers MC, Canlet C, Molina J, Bernard H, Créminon C, Wal JM (2011) Immunological and metabolomic impacts of administration of Cry1Ab protein and MON 810 maize in mouse. PLoS One 27:e16346.
Andreassen M, Rocca E, Bøhn T, Wikmark O-G, van den Berg J, Løvik M (2015) Humoral and cellular immune responses in mice after airway administration of Bacillus thuringiensis Cry1Ab and MON810 Cry1Ab -transgenic maize. Food Agric Immunol 26:521–37.
Torres-Martínez M, Rubio-Infante N, García- Hernández AL, Nava-Acosta R, Ilhuicatzi- Alvarado D, Moreno-Fierros L (2016) Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Int J Biochem Cell Biol 78:106-115.
Derbyshire DJ, Ellar DJ, Li J (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr D Biol Crystallogr 57:1938- 44.
Evdokimov AG, Moshiri F, Sturman EJ, Rydel TJ, Zheng M, Seale JW, Franklin S (2014) Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Sci 23:1491-7.