2016, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2016; 35 (4)
El citoesqueleto: un componente fundamental en la arquitectura y en la fisiología celular
Salceda SR, Albert GJS
Idioma: Español
Referencias bibliográficas: 85
Paginas: 102-114
Archivo PDF: 545.34 Kb.
RESUMEN
Los componentes del citoplasma de las células eucariontes están en constante
movimiento gracias a la presencia del citoesqueleto, intrincada y ramificada red
de proteínas que le permiten a la célula adoptar diferentes formas, organizar los
distintos componentes, mantener el volumen y llevar a cabo el desplazamiento celular.
Adicionalmente a los microtúbulos, microfilamentos y filamentos intermedios,
se demostró la existencia de un cuarto componente del citoesqueleto formado por
las proteínas septinas, las que pueden adoptar distintas arreglos estructurales. Una
variedad de estudios indican en procariontes la existencia de proteínas que forman
estructuras filamentosas equivalentes al citoesqueleto de los eucariontes; los mecanismos
que regulan su ensamble y desensamble aún se desconocen. Esta revisión
presenta las generalidades de esta estructura con énfasis en la información reciente
de esta dinámica estructura.
REFERENCIAS (EN ESTE ARTÍCULO)
Porter KR, Anderson KL (1982) The structure of the cytoplasmic matrix preserved by freezedrying and freeze-substitution. Eur J Cell Biol 29:83-96.
Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Watson P (2015) Molecular Biology of the Cell. Garland Publishing, New York, p 1342.
de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell division protein FtsZ is a GTPase. Nature 359:254-256.
Xu K, Babcock HP, Zhuang X (2012) Dualobjective STORM reveals three dimensional filament organization in the actin cytoskeleton. Nature Methods 9:185-188.
Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and function. Nat rev Mol Cell Biol 15:163-177.
Margiotta A, Bucci C (2016) Role of intermediate filaments in vesicular traffic. Cells 5:20; DOI:10.3390/cells 5020020.
Sakamoto Y, Boëda B, Etienne-Manneville S (2013) APC binds intermediate filaments and is required for their reorganization during cell migration. J Cell Biol 200:249-258.
Gruenbaum Y, Aebi U (2014) Intermediate filaments: a dynamic network that controls cell mechanics. Methods Cell Biol 129:103-127.
Borisy G, Heald R, Howard J, Janke C, Musacchio A, Nogales E (2016) Microtubules: 50 years on from the discovery of tubulin. Nature 17:322-328.
Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985) Organelle, bead, and microtubule translocations promoted by soluble fraction from the squid giant axon. Cell 40:559-569.
Gibbons IR, Rowe AJ (1965) Dynein: A protein with adenosine triphosphatase activity from cilia. Science 149:424-426.
Vale RD, Reese TS, Sheetz MP (1985). Identification of a novel force-generating protein, kinesin, in microtubule based motility. Cell 42:39-50.
Jackson S (2012) Molecules in motion: Michael Sheetz, James Spudish, and Ronald Vale receive the 2012 Albert Lasker Basic Medical Research Award. J Clin Invest 122:3374-3377.
Wehenkel A, Janks C (2014) Towards elucidating the tubulin code. Nature Cell Biol 16:303-305.
Sirajuddin M, Rice LM, Vale RD (2014) regulation of microtubule motors by tubulin isotypes and post-transductional modifications. Nat Cell Biol 16:335-344.
Conduit PT, Wainman A, Raff JW (2015) Centrosome function and assembly in animal cells. Nature Rev Mol Cell Biol 16:611-624.
Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194: 513-525.
Gotz SC, Anderson KV (2010) The primary cilium: a signaling centre during vertebrate development. Nat Rev Genet 11:331-344.
Tollenaere MA, Mailand N, Bekker-Jensen S (2015) Centriollar satellites: key mediators of centrosome functions. Cell Mol Life Sci 72:11- 23.
Nigg EA, Stearns T (2011) The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154- 1160.
Zhang S, Mitchel BJ (2015) Centriole biogenesis and function in multiciliated cells. Methods Cell Biol 129:103-127.
Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell´s antenna. Nat Rev Mol Cell Biol 12:222-234.
Orhon I, Dupont N, PampliegaO, Cuervo AM, Codogno P (2015) Autophagy and regulation of cilia function and assembly. Cell death Differ 22:389-397.
Davidson AJ, Wood W (2016) Unravelling the actin cytoskeleton: A new competitive edge? Trends Cell Biol 26:569-576.
Schuh M (2011) An actin-dependent mechanism for long-range vesicle transport. Nature Cell Biol 12:1431-1437. DOI: 10.1038/ ncb2353.
Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473-1478.
Jaqaman K, Grinstein S (2012) Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 22:215-226.
Auer M, Hausott B, Klimascheuski L (2011) Rho GTPases as regulators of morphological neuroplasticity. Annals Anatomy 193:259- 266.
Provenzano PP, Keely PJ (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124:1195- 1205.
Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev Mol Cell Biol 11:633-643.
Trepat X, Chen Z, Jacobson K (2012) Cell Migration. Compr Physiol 2:2369-2392.
Navarro Lérida I, Sánchez-Perdes S, Calvo M, Rentero C, Zheng Y, Enrich C, Del Pozo MA (2012) A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 31:534-551.
Goetsch L (1976) A highly ordered ring of membranes-associated filaments in budding yeast. J Cell Biol 69:717-721.
Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478- 489.
Mostony S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nature Rev Mol Cell Biol 13:183-194.
Cao L, Ding X, Yu w; Yang x, Shen S, Yu L (2007) phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett 581:5526-5532.
Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Rev 74:504-528.
Graumann PL (2007) Cytoskeleton elements in bacteria. Annu Rev Microbiol 61:589-618.
Jones LJ, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin like filaments in Bacillus subtilis. Cell 104:913-922.
Ptacin JL, Lee SF, Garner EC, Toro E, Eckert M, Comolli LR, Moerner WE, Shapiro L (2010) A spindle –like apparatus guides bacterial chromosome segregation. Nature Cell Biol 12:791-799 DOI: 10.1038/ncb2038.
Murat D, Byre M, Komeili A (2010) Cell biology of prokaryotic organelles. Cold Spring Harbor Perspect Biol 2:a000422.
Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: a intermediate filament-like function in cell shape. Cell 115:705-713.
Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ (2006) Multiple large bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 62:5- 14.
Carballido-López R (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev 70:888-909.
Lowe J, Amos LA (2009) Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int J Biochem cell Biol 41:323-329.
Allemand JF, Maier B, Smith DE (2012) Molecular motors for DNA translocation in prokaryontes. Curr Opinion Biotechnol 23:503-509.
Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041.
Penno A, Hackenbroich G, Thiele C (2013) Phospholipids and lipid droplets. Biochim Biophys Acta 1831:589-594.
Brown DA (2001) Lipid droplets: proteins floating on a pool of fat. Curr Biol 11:R446-449.
Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, et al. (2007) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. Journal of Lipid Research 48:837-847.
Puri V, Czech MP (2008) Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest 118:2693-2696.
Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store ‘em up or burn ‘em down. Genetics 193:1-50.
Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355-1369.
Koch B, Schmidt C, Daum G (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38:892-915.
Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541-585.
Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, et al. (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491- 500.
Wolinski H, Kolb D, Hermann S, Koning RI, Kohlwein SD (2011) A role for seipin in lipid droplet dynamics and inheritance in yeast. Journal of Cell Science 124:3894-3904.
Fei WH, Du XM, Yang HY (2011) Seipin, adipogenesis and lipid droplets. Trends in Endocrinology and Metabolism 22:204-210.
Barneda D, Frontini A, Cinti S, Christian M (2013) Dynamic changes in lipid dropletassociated proteins in the “browning” of white adipose tissues. Biochim Biophys Acta 1831:924-933.
Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, et al. (2017) Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 58:289-298.
Nagao K, Yanagita T (2008) Bioactive lipids in metabolic syndrome. Progress in Lipid Research 47:127-146.
Yu J, Zhang S, Cui L, Wang W, Na H, et al. (2015) Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta 1853:918-928.
Krahmer N, Farese RV, Walther TC (2013) Balancing the fat: lipid droplets and human disease. Embo Molecular Medicine 5:973-983.
Fei W, Shui G, Gaeta B, Du X, Kuerschner L, et al. (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473-482.
Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73-76.
Gross DA, Silver DL (2014) Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 49:304-326.
Guo Y, Cordes KR, Farese RV, Walther TC (2009) Lipid droplets at a glance. Journal of Cell Science 122:749-752.
Walther TC, Farese RV (2009) The life of lipid droplets. Biochimica Et Biophysica Acta- Molecular and Cell Biology of Lipids 1791:459- 466.
Elamin AA, Stehr M, Singh M (2012) Lipid Droplets and Mycobacterium leprae Infection. J Pathog 2012:361374.
Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: A review. Advances in Colloid and Interface Science 147-48:237-250.
Dubland JA, Francis GA (2015) Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Frontiers in Cell and Developmental Biology 3:3.
Choi SY, Hirata K, Ishida T, Quertermous T, Cooper AD (2002) Endothelial lipase: a new lipase on the block. J Lipid Res 43:1763- 1769.
Huang J, Qian HY, Li ZZ, Zhang JM, Wang S, et al. (2010) Role of endothelial lipase in atherosclerosis. Transl Res 156:1-6.
Zhu ZW, Ding YF, Gong ZW, Yang L, Zhang SF, et al. (2015) Dynamics of the Lipid Droplet Proteome of the Oleaginous Yeast Rhodosporidium toruloides. Eukaryotic Cell 14:252-264.
Wu SG, Hu CM, Jin GJ, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology 101:6124-6129.
Arous F, Triantaphyllidou IE, Mechichi T, Azabou S, Nasri M, et al. (2015) Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass & Bioenergy 80:307-315.
Chang YH, Chang KS, Lee CF, Hsu CL, Huang CW, et al. (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp in the batch cultures using corncob hydrolysate as carbon source. Biomass & Bioenergy 72:95-103.
Ivashov VA, Grillitsch K, Koefeler H, Leitner E, Baeumlisberger D, et al. (2013) Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta 1831:282-290.
Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, et al. (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry 283: 17065-17074.
Wiebe MG, Koivuranta K, Penttila M, Ruohonen L (2012) Lipid production in batch and fedbatch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12: 26.
Choi SY, Ryu DD, Rhee JS (1982) Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol Bioeng 24: 1165-1172.
Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, et al. (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6: 1450-1459.
Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, et al. (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144: 360-369.
Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology 7: 373-378.
Martin S (2013) Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Horm Mol Biol Clin Investig 15: 11-18.