2017, Número 3
<< Anterior Siguiente >>
Acta Med 2017; 15 (3)
Diabetes mellitus y su impacto en la etiopatogenia de la sepsis
Machado-Villarroel L, Montano-Candia M, Dimakis-Ramírez DA
Idioma: Español
Referencias bibliográficas: 60
Paginas: 207-215
Archivo PDF: 231.02 Kb.
RESUMEN
Ciertas enfermedades infecciosas tienen mayor frecuencia y severidad en pacientes con diabetes mellitus (DM), lo cual incrementa sustancialmente las tasas de morbimortalidad. La DM incrementa el riesgo para bacteremia nosocomial adquirida en la comunidad. La mayor incidencia de infecciones en diabéticos está ocasionada por la hiperglucemia concomitante, lo cual ocasiona una disfunción inmunológica caracterizada por alteraciones de la función de los neutrófilos, actividad antioxidante e inmunidad humoral disminuida. Otras complicaciones son micro y macroangiopatía, neuropatía, trastornos en la motilidad urinaria y gastrointestinal, los cuales en conjunto contribuyen a la patogenia de los procesos infecciosos en estos pacientes. Actualmente se piensa que el involucro de productos finales de la glucosilación avanzada está asociado a inactivación de componentes inmunitarios, contribuyendo a una mayor vulnerabilidad frente a infecciones. Se ha propuesto una asociación entre hiperglucemia e infección en pacientes en estado crítico; no obstante, la evidencia para ello aún es limitada por la complejidad de los factores que intervienen. Distintos factores de riesgo influyen de forma negativa en el pronóstico de la sepsis severa tales como edad avanzada, inmunosupresión y alcoholismo crónico. Aún existe información contradictoria respecto al impacto que pudiese ejercer la DM en el pronóstico de pacientes sépticos.
REFERENCIAS (EN ESTE ARTÍCULO)
Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013; 13: 435-444.
Rhodes ET, Prosser LA, Hoerger TJ, Lieu T, Ludwig DS, Laffel LM. Estimated morbidity and mortality in adolescents and young adults diagnosed with type 2 diabetes mellitus. Diabet Med. 2012; 29 (4): 453-463.
Venot M, Weis L, Clec’h C, Darmon M, Allaouchiche B, Goldgran-Tolédano D et al. Acute kidney injury in severe sepsis and septic shock in patients with and without diabetes mellitus: a multicenter study. PLoS One. 10(5): e0127411. doi:10.1371/journal.pone.0127411.
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pr. 2014; 103 (2): 137-149.
Liberty IF, Freha NA, Baumfeld Y, Codish S, Schlaeffer F, Novack V. Prognostic value of glycated hemoglobin for one year mortality following hospitalization in the internal medicine ward. Isr Med Assoc J. 2015; 17: 277-281.
Spiller F, Carlos D, Souto FO, de Freitas A, Soares FS, Vieira SM et al. α1-acid glycoprotein decreases neutrophil migration and increases susceptibility to sepsis in diabetic mice. Diabetes. 2012; 61: 1584-1591.
Uyanik A, Unal D, Uyanik MH, Halici Z, Odabasoglu F, Altunkaynak ZB et al. The effects of polymicrobial sepsis with diabetes mellitus on kidney tissues in ovariectomized rats. Ren Fail. 2010; 32: 592-602.
Williams PT. Inadequate exercise as a risk factor for sepsis mortality. PLoS One. 8 (12): e79344. doi:10.1371/journal.pone.0079344.
Korbel L, Spencer JD. Diabetes mellitus and infection: an evaluation of hospital utilization and management costs in the United States. J Diabetes Complicat. 2015; 29: 192-195.
Finfer S. Clinical controversies in the management of critically ill patients with severe sepsis: resuscitation fluids and glucose control. Virulence. 2014; 5 (1): 183-188.
McDonald HI, Nitsch D, Millett ERC, Sinclair A, Thomas SL. New estimates of the burden of acute community-acquired infections among older people with diabetes mellitus: a retrospective cohort study using linked electronic health records. Diabet Med. 2014; 31: 606-614.
Edwards R, Hutson R, Johnson J, Sherwin R, Gordon-Strachan G, Frankson M et al. Severe sepsis in the emergency department – an observational cohort study from the university hospital of the west indies. West Indian Med J. 2013; 62 (3): 224-229.
Kumar G, Kumar N, Taneja A, Kaleekal T, Tarima S, McGinley E et al. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest. 2011; 140: 1223-1231.
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH et al. Immunosuppression in patients who die of sepsis and multiple organ failure. J Am Med Assoc. 2011; 306: 2594-2605.
Quan HB, Li TY, Gao YY, Chen DX. Clinical features of diabetes mellitus cases complicated by Burkholderia pseudomallei septicemia. Genet Mol Res. 2014; 13 (2): 3108-3116.
Michalia M, Kompoti M, Koutsikou A, Paridou A, Giannopoulou P, Trikka-Graphakos E et al. Diabetes mellitus is an independent risk factor for ICU-acquired bloodstream infections. Intensive Care Med. 2009; 35: 448-454.
Chang CW, Kok VC, Tseng TC, Horng JT, Liu CE. Diabetic patients with severe sepsis admitted to intensive care unit do not fare worse than non-diabetic patients: a nationwide population-based cohort study. PLoS One. 2012; 7 (12): e50729. doi:10.1371/journal.pone.0050729.
Schuetz P, Yano K, Sorasaki M, Ngo L, St Hilaire M, Lucas JM et al. Influence of diabetes on endothelial cell response during sepsis. Diabetologia. 2011; 54: 996-1003.
Singh SK, Sridhar GR. Infections and diabetes. Int J Diabetes Dev Ctries. 2015; 35 (2): 59-62.
McKane CK, Marmarelis M, Mendu ML, Moromizato T, Gibbons FK, Christopher KB. Diabetes mellitus and community-acquired bloodstream infections in the critically ill. J Crit Care. 2014; 29: 70-76.
Shah BR, Hux JE. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care. 2003; 26: 510-513.
Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011; 364: 829-841.
Knapp S. Diabetes and infection: is there a link? – a mini-review. Gerontology 2013; 59: 99-104.
Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302: 2323-2329.
Khan MAA, Hunter JM, Tan C, Seleem M, Stride PJO. Staphylococcal sepsis with multiple abscesses, urinary tract infection, and bilateral renal vein thrombosis in a patient with uncontrolled diabetes mellitus. Case Report Med. 2012; 2012: 357502. doi:10.1155/2012/357502.
Yo CH, Lee MTG, Gi WT, Chang SS, Tsai KC, Chen SC et al. Prognostic determinants of community-acquired bloodstream infection in type 2 diabetic patients in ED. Am J Emerg Med. 2014; 32: 1450-1454.
Fram D, Okuno MF, Taminato M, Ponzio V, Manfredi SR, Grothe C. Risk factors for bloodstream infection in patients at a Brazilian hemodialysis center: a case–control study. BMC Infect Dis. 2015; 15: 158.
Fram D, Taminato M, Ponzio V, Manfredi SR, Grothe C, Batista RE. Risk factors for morbidity and mortality of bloodstream infection in patients undergoing hemodialysis: a nested case-control study. BMC Res Notes. 2014; 7: 882.
Khan FG, Ahmed E. Acute renal failure in diabetes mellitus. J Pak Med Assoc. 2015; 65: 179-182.
Kuperman EF, Showalter JW, Lehman EB, Leib AE, Kraschnewski JL. The impact of obesity on sepsis mortality: a retrospective review. BMC Infect Dis. 2013; 13: 377.
Mellbin LG, Bjerre M, Thiel S, Hansen TK. Complement activation and prognosis in patients with type 2 diabetes and myocardial infarction. Diabetes Care. 2012; 35: 911-917.
Mathern DR, Heeger PS. Molecules great and small: the complement system. Clin J Am Soc Nephrol. 2015; 10(9): 1636-1650.
Geng P, Ding Y, Qiu L, Lu Y. Serum mannose-binding lectin is a strong biomarker of diabetic retinopathy in chinese patients with diabetes. Diabetes Care. 2015; 38 (5): 868-875.
Østergaard JA, Bjerre M, Dagnaes-Hansen F, Hansen TK, Thiel S, Flyvbjerg A. Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes. Scand J Immunol. 2013; 77: 187-194.
Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y, Satomura A et al. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev. 2013; 29: 220-226.
Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab. 2012; 16: S27-36.
Ghosh P, Vaidya A, Sahoo R, Goldfine A, Herring N, Bry L et al. Glycation of the complement regulatory protein CD59 is a novel biomarker for glucose handling in humans. J Clin Endocrinol Metab. 2014; 99 (6): 999-1006.
Davies CS, Harris CL, Morgan BP. Glycation of CD59 impairs complement regulation on erythrocytes from diabetic subjects. Immunology. 2005; 114: 280-286.
Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014; 57: 1737-1741.
Yang M, Gan H, Shen Q, Tang W, Du X, Chen D. Proinflammatory CD14+CD16+ monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia. Inflammation. 2012; 35 (1): 388-396.
Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J. Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol. 2010; 105: 61-71.
Nandy D, Janardhanan R, Mukhopadhyay D, Basu A. Effect of hyperglycemia on human monocyte activation. J Investig Med. 2011; 59 (4): 661-667.
Thomas HE, Graham KL, Chee J, Thomas R, Kay TW, Krishnamurthy B. Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Ann N Y Acad Sci. 2013; 1283: 81-86.
Restrepo BI, Twahirwa M, Rahbar MH, Schlesinger LS. Phagocytosis via complement or fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS One. 2014; 9 (3): e92977. doi:10.1371/journal.pone.0092977.
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012; 30: 459-489.
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013; 13: 159-175.
Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol. 2005; 25 (7): 1401-1407.
Umsa-ard W, Thongboonkerd V, Soongsathitanon J. Activated status and altered functions of neutrophils in poorly controlled diabetes. J ASEAN Fed Endocr Soc. 2015; 30 (1): 9-17.
Savu O, Serafinceanu C, Grajdeanu IV, Iosif L, Gaman L, Stoian I. Paraoxonase lactonase activity, inflammation and antioxidant status in plasma of patients with type 1 diabetes mellitus. J Int Med Res. 2014; 42 (2): 523-529.
Gorudko IV, Kostevich VA, Sokolov AV, Shamova EV, Buko IV, Konstantinova EE. Functional activity of neutrophils in diabetes mellitus and coronary heart disease: role of myeloperoxidase in the development of oxidative stress. Exp Biol Med. 2012; 154 (7): 28-36.
Menegazzo L, Ciciliot S, Poncina N, Mazzucato M, Persano M, Bonora B et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015; 52: 497-503.
Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol. 2013; 4: 45. doi:10.3389/fimmu.2013.00045.
Min D, Brooks B, Wong J, Salomon R, Bao W, Harrisburg B et al. Alterations in monocyte CD16 in Association with Diabetes Complications. Mediat Inflamm. 2012; 2012 649083: 10. doi:10.1155/2012/649083.
Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J et al. T cell–derived IL-22 amplifies IL-1b-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014; 63: 1966-1977.
Yende S, van der Poll T, Lee M, Huang DT, Newman AB, Kong L. The influence of pre-existing diabetes mellitus on the host immune response and outcome of pneumonia: analysis of two multicentre cohort studies. Thorax. 2010; 65 (10): 870-877.
Zhang M, Chen P, Chen S, Sun Q, Zeng QC, Chen JY et al. The association of new inflammatory markers with type 2 diabetes mellitus and macrovascular complications: a preliminary study. Eur Rev Med Pharmacol Sci. 2014; 18: 1567-1572.
Gupta S, Gambhir JK, Kalra OP, Gautam A, Shukla K, Mehndiratta M et al. Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. J Diabetes Complications. 2013; 27: 548-552.
Radhakrishnan P, Srikanth P, Seshadri KG, Barani R, Samanta M. Serum monocyte chemoattractant protein-1 is a biomarker in patients with diabetes and periodontitis. Indian J Endocr Metab. 2014; 18: 505-510.
Schuetz P, Castro P, Shapiro NI. Diabetes and sepsis: preclinical findings and clinical relevance. Diabetes Care. 2011; 34 (3): 771-778.
Filgueiras LR, Martins JO, Serezani CH, Capelozzi VL, Montes MBA, Jancar S. Sepsis-induced acute lung injury (ALI) is milder in diabetic rats and correlates with impaired NF-κB activation. PLoS One. 2012; 7 (9): e44987. doi:10.1371/journal.pone.0044987.