2017, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2017; 20 (2)
Obtención de dehidrodiisoeugenol por dimerización de isoeugenol con cultivos celulares de Bouvardia ternifolia (trompetilla)
Hernández-Vázquez L, Olivera-Flores MTJ, Luna H, Navarro-Ocaña A
Idioma: Español
Referencias bibliográficas: 19
Paginas: 15-22
Archivo PDF: 911.83 Kb.
RESUMEN
Los cultivos celulares de
Bouvardia ternifolia fueron usados como catalizadores en la reacción de
acoplamiento oxidativo de isoeugenol. El compuesto dimérico dehidrodiisoeugenol se obtuvo con 77 % de
rendimiento cuando se usó el sobrenadante obtenido de un cultivo de células en suspensión, que poseía
actividad de peroxidasa. La conversión procede en condiciones suaves de reacción y al adicionar el
peróxido de hidrógeno disminuye el rendimiento en la obtención del dehidrodiisoeugenol.
REFERENCIAS (EN ESTE ARTÍCULO)
Anita, Y., Widiyarti, G. & Abbas, J. (2014). Synthesis and elucidation structure of O-para dehydroguaiacol prepared by crude of Brassica oleracea var. alboglabra peroxidasecatalyzed oxidation. Journal of Applied Pharmaceutical Science. 4, 062-065. DOI: 10.7324/JAPS.2014.40411
Bartolomeazzi, R., Verardo, G., Liessi, A. & Callea, A. (2010). Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol with DPPH radical and their Role in the radical scavenging activity. Food Chemistry. 118, 256-265. DOI: 10.1016/j.foodchem.2009.04.115
Farías-Días, A. (1988). An improved high yield synthesis of dehydrodieugenol Phytochemistry 27, 3008-3009. DOI: 10.1016/0031-9422(88)80715-5
Findik, E., Ceylan, M. & Elmastaş, M. (2011). Isoeugenolbased novel potent antioxidants: synthesis and reactivity. European Journal of Medicinal Chemistry. 46, 4618-4624. DOI: 10.1016/j.ejmech.2011.07.041
Giri, A., Dhingra, V., Giri, C.C., Singh, A., Ward, O. P. & Narasu, M.L. (2001). Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnology Advances. 19 (3)175-199. DOI: 10.1016/S0743-9750(01)85155-9
Hernández-Vázquez, L., Olivera-Flores, M.T.J., Ruiz-Terán, F., Ayala, I & Navarro-Ocaña, A. (2011). Screening of plant cell culture for their capacity to dimerize eugenol and isoeugenol: preparation of dehydrodieugenol. Journal Molecular Catalysis. B: Enzymatic. 72, 102-106. DOI: 10.1016/molcab.2011.05.005
Hua, D., Ma, C., Lin, S., Song, L., Deng, Z., Maomy, Z., Zhang, Z., Yu, B. & Xu, P. (2007). Biotransformation of Isoeugenol to vainillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites. Journal of Biotechnology. 130, 463-470. DOI: 10.1016/j. biotec.2007.05.003
Ishihara, K.,Hamada, H., Hirata, T. & Nakajima, N. (2003). Biotransformation using plant cultured cells. Journal Molecular Catalysis. B: Enzymatic. 23 (2.6), 145–170. DOI: 10.1016/S1381-1177(03)00080-8
Juhász, L., Kürti, L. & Antus, S. (2000). Simple synthesis of benzofuranoid neolignans from Myristica fragrans. Journal of Natural Products. 63, 866-870. DOI: 10.1021/ np990327h
Moussouni, S., Saru, M.L., Ioannou, E., Mansour, M., Detsi, A., Roussis, V. & Kefalas, P. (2011). Crude peroxidase from onion solid waste as a tool for organic synthesis. Part II: oxidative dimerization-cyclization of methyl p-coumarate, methyl caffeate and methyl ferulate. Tetrahedron. Letters. 52, 1165-1168. DOI: 10.1016/j.tetlet.2011.01.004
Murakami, Y., Shoji, M., Hirata, A., Tanaka, S., Yokoe, I. & Fujisawa, S. (2005). Dehydrodiisoeugenol, an Isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Archives of Biochemistry and Biophysics. 434, 326-332. DOI: 10.1016/j.abb.2004.11.013
Nascimento, I. R., Lopes, L. M. X., Davin, L. B. & Lewis, N. G. (2000). Stereoselective synthesis of 8,9-llcarinediols. Tetrahedron 56 (47), 9181-9193. DOI: 10.1016/S0040- 4020(00)00873-5
Pereira, A.C., Magalhães L.G., Gonçalves, U.O., Luz, P.P., Moraes, A.C.G., Rodrigues, V., Da Matta Guades, P.M., Da Silva Filho, A.A., Cunha, W.R., Bastos, J.K., Nanayakkara, N.P.D., e Silva, M.L.A. (2011). Schistosomicidal and trypanocidal structure-activity relationships for (±)-licarin A and its (-)- and (+)-enantiomers. Phytochemistry 72, 1424- 1430. DOI: 10.1016/j.phytochem.2011.04.007
Ramachandra Rao, S & Ravishankar, G.A. (1999) Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of Capsicum frutescens: study of the influence of β-cyclodextrin and fungal elicitor. Process Biochemistry. 35 (3-4), 341–348. DOI: 10.1016/s0032-9592(99)00077-1
Sánchez de Jiménez, E. & Fernández, L. (1983). Biochemical parameters to assess cell differentiation of Bouvardia ternifolia Schlecht callus. Planta 158 (5), 377-383. DOI: 10.1007/BF00397728
Shiba, T., Xiao, L., Miyakoshi, T. & Chen, C.-L. (2000). Oxidation of Isoeugenol and coniferyl alcohol catalyzed by laccases isolated from Rhus vernicifera Stokes and Pycnoporus coccineus. Journal of Molecular Catalysis. B: Enzymatic. 10 (6), 605-615. DOI: 10.1016/s1381- 1177(00)00184-3
Suga, T. & Hirata, T. (1990) Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry 29, 2393- 2406. DOI: 10.1016/0031-9422(90)85155-9
Wang, E.-C, Wein, Y-S. & Kuo, Y-H. (2006). A concise and efficient synthesis of s alvinal from isoeugenol via a phenoxenium ion intermediate. Tetrahedron Letters. 47, 9195–9197. DOI: 10.1016/tetlet.2006.10.131
Wenqiang, G., Shufen, L., Ruixiang, Y., Shaoku, T. & Can. Q. (2007). Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other tree traditional extraction methods. Food Chemistry. 101, 1558-1564. DOI: 10.1016/j.foodchem.2006.04.009