2017, Número 2
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2017; 20 (2)
Red de coexpresión de 320 genes de Tectona grandis relacionados con procesos de estrés abiótico y xilogénesis
Camel V, Galeano E, Carrer H
Idioma: Español
Referencias bibliográficas: 47
Paginas: 5-14
Archivo PDF: 553.68 Kb.
RESUMEN
Tectona grandis es un árbol maderable de importancia económica en bosques tropicales y subtropicales.
Mediante este estudio, se identificaron familias de factores de transcripción (FTs) y genes codificantes para enzima,
diferencialmente expresados en el xilema del tallo, implicados en la regulación de la respuesta a estrés abiótico y
xilogénesis en
T. grandis. Así, fue analizada la distribución evolutiva de 19 genes codificantes para FTs
T. grandis
mediante análisis filogenéticos. También, fue utilizada la minería de bases de datos y publicaciones para identificar
320 genes de
Arabidopsis thaliana (ortólogos a
T. grandis) como soporte experimental y predictivo. Como resultados,
se encontraron FTs de las familias
bZIP, MYB, NAC, ER, bHLH, NuY y genes que codifican enzimas. Así mismo, se logró
analizar el interactoma de
T. grandis encontrando correlaciones de Pearson significativas para genes que regulan
vías metabólicas de fenilpropanoides y estrés abiótico. Además, la red de coexpresión reveló nodos y aristas entre
los genes
TgRAP1, TgMyB1, TgHSF1, TgMyB3, TgNAC1, TgTsiid1, TgLieTFs1, TgNuy3, TgRAP2 y
TgNuy4. En particular, los
análisis de ontología génica mostraron 31 genes de respuesta a estrés abiótico, principalmente
TgHShT1, TgHSF1
y
TgHSF2 como correguladores. Además, se encontró que el regulador maestro
TgNAC1, está involucrado en la
corregulación de otros factores de transcripción.
REFERENCIAS (EN ESTE ARTÍCULO)
Abe, H., Urao, T., Ito, T., Seki, M., & Shinozaki, K. (2003). Transcriptional Activators in Abscisic Acid Signaling. Society, 15(January), 63–78. https://doi.org/10.1105/tpc.006130.salt
Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., & Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 17(18), 5484–96. https://doi.org/10.1093/emboj/17.18.5484
Anish, M. C., Anoop, E. V., Vishnu, R., Sreejith, B., & Jijeesh, C. M. (2015). Effect of growth rate on wood quality of teak (Tectona grandis L. f.): a comparative study of teak grown under differing site quality conditions. Journal of the Indian Academy of Wood Science, 12(1), 81–88. https://doi.org/10.1007/s13196-015-0147-1
Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003
Banti, V., Mafessoni, F., Loreti, E., Alpi, A., & Perata, P. (2010). The Heat-Inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis. Plant Physiology, 152(3), 1471–1483. https://doi.org/10.1104/pp.109.149815
Boer, D. R., Freire-Ríos, A., Van Den Berg, W. A. M., Saaki, T., Manfield, I. W., Kepinski, S., Coll, M. (2014). Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 156(3), 577–589. https://doi. org/10.1016/j.cell.201312.027
Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martínez- García, J. F., Bilbao-Castro, J. R., & Robertson, D. L. (2010). Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology, 153(3), 1398–412. https://doi. org/10.1104/pp.110.153593
Consortium, T. G. O. (2000). Gene ontologie: Tool for the unification of biology. Nature Genetics, 25(1), 25–29. https://doi. org/10.1038/75556.Gene
Dameron, O., Bettembourg, C., & Le Meur, N. (2013). Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study. PLoS ONE, 8(10), 1–18. https://doi.org/10.1371/journal. pone.0075993
Dharmawardhana, P., Brunner, A. M., & Strauss, S. H. (2010). Genomewide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics, 11, 150. https://doi.org/10.1186/1471-2164-11-150
Diningrat, D. S., Widiyanto, S. M., Pancoro, a., . I., Shim, D., Panchangam, B., Carlson, J. E. (2015). Transcriptome of Teak (Tectona grandis, L.f) in Vegetative to Generative Stages Development. Journal of Plant Sciences, 10(1), 1–14. https:// doi.org/10.3923/jps.2015.1.14
Fröhlich, H., Speer, N., Poustka, A., & Beissbarth, T. (2007). GOSim- -an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics, 8(1), 166. https://doi.org/10.1186/1471-2105-8-166
Galeano, E., Vasconcelos, T. S., Ramiro, D. A., De Martin, V. D. F., & Carrer, H. (2014). Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.). BMC Research Notes, 7(1), 464. https://doi.org/10.1186/1756-0500-7-464
Galeano, E., Vasconcelos, T. S., Vidal, M., Mejía-Guerra, M. K., & Carrer, H. (2015). Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC Plant Biology, 15(1), 221. https:// doi.org/10.1186/s12870-015-0599-x
Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5(1), 26–33. https://doi. org/10.4161/psb.5.1.10291
Harrison, C. J., Bohm, A. A., & Nelson, H. C. (1994). Crystal structure of the DNA binding domain of the heat shock transcription factor. Science, 263(5144), 224–227. https://doi.org/10.1126/ science.8284672
Ihnatowicz, A., Pesaresi, P., Lohrig, K., Wolters, D., Müller, B., & Leister, D. (2008). Impaired photosystem I oxidation induces STN7-dependent phosphorylation of the light-harvesting complex I protein Lhca4 in Arabidopsis thaliana. Planta, 227(3), 717–722. https://doi.org/10.1007/s00425-007-0650-8
Jin, J., Zhang, H., Kong, L., Gao, G., & Luo, J. (2014). PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 42(D1), 1182–1187. https://doi.org/10.1093/nar/gkt1016
Kang, Y. H., Kirik, V., Hulskamp, M., Nam, K. H., Hagely, K., Lee, M. M., & Schiefelbein, J. (2009). The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. The Plant Cell, 21(4), 1080–1094. https://doi. org/10.1105/tpc.108.063180
Kirik, V., Schnittger, A., Radchuk, V., Adler, K., Hulskamp, M., & Baumlein, H. (2001). Ectopic expression of the Arabidopsis AtMYB23 gene induces differentiation of trichome cells. Dev Biol, 235(2), 366–377. https://doi.org/10.1006/dbio.2001.0287
Kotak, S., Port, M., Ganguli, A., Bicker, F., & Von Koskull-Döring, P. (2004). Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant Journal, 39(1), 98–112. https://doi.org/10.1111/j.1365- 313X.2004.02111.x
Krause, G. H., Gallé, A., Virgo, A., García, M., Bucic, P., Jahns, P., & Winter, K. (2006). High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.). Plant Biology, 8(1), 31–41. https://doi.org/10.1055/s-2005-872901
Lin, L., Lucas, M. De, Turco, G., Toal, T. W., Gaudinier, A., Young, N. F., Brady, S. M. (2015). An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 517(7536), 571–575. https://doi.org/10.1038/nature14099
Liu, J., Sun, N., Liu, M., Liu, J., Du, B., Wang, X., & Qi, X. (2013). An Autoregulatory Loop Controlling Arabidopsis HsfA2 Expression: Role of Heat Shock-Induced Alternative Splicing. Plant Physiology, 162(1), 512–521. https://doi.org/10.1104/ pp.112.205864
Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., Seki, M. (2008). Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant and Cell Physiology, 49(8), 1135–1149. https://doi.org/10.1093/pcp/pcn101
Mizrachi, E., Hefer, C. A., Ranik, M., Joubert, F., & Myburg, A. a. (2010). De novo assembled expressed gene catalog of a fastgrowing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics, 11(1), 681. https://doi.org/10.1186/1471-2164-11-681 n1471-2164-11-681 [pii]
Naika, M., Shameer, K., Mathew, O. K., Gowda, R., & Sowdhamini, R. (2013). STIFDB2: An updated version of plant stress-responsive transcription factor database with additional stress signals, stressresponsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant and Cell Physiology, 54(2), 1–15. https://doi.org/10.1093/pcp/pcs185
Nardini, M., Gnesutta, N., Donati, G., Gatta, R., Forni, C., Fossati, A., … Mantovani, R. (2013). Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell, 152(1–2), 132–143. https://doi.org/10.1016/j. cell.2012.11.047
Nishizawa-Yokoi, A., Tainaka, H., Yoshida, E., Tamoi, M., Yabuta, Y., & Shigeoka, S. (2010). The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant and Cell Physiology, 51(3), 486–496. https://doi.org/10.1093/pcp/pcq015
Nole-Wilson, S., & Krizek, B. A. (2000). DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res, 28(21), 4076–4082. https://doi.org/DOI 10.1093/nar/28.21.4076
Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69(19), 3225–3243. https://doi.org/10.1007/s00018- 012-1091-5
Ogata, K., Morikawa, S., Nakamura, H., Hojo, H., Yoshimura, S., Zhang, R., Sarai, A. (1995). Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nature Structural Biology, 2(4), 309–20. https://doi.org/10.1038/nsb0495-309
Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162(4), 1849–66. https://doi.org/10.1104/pp.113.221044
Quiala, E., Cañal, M. J., Rodríguez, R., Yagüe, N., Chávez, M., Barbón, R., & Valledor, L. (2012). Proteomic profiling of Tectona grandis L. leaf. Proteomics, 12(7), 1039–1044. https://doi.org/10.1002/ pmic.201100183
Riechmann, J. L. (2000). Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science, 290(5499), 2105–2110. https://doi.org/10.1126/ science.290.5499.2105
Roach, M. J., Mokshina, N. Y., Badhan, A., Snegireva, A. V., Hobson, N., Deyholos, M. K., & Gorshkova, T. A. (2011). Development of Cellulosic Secondary Walls in Flax Fibers Requires -Galactosidase. Plant Physiology, 156(3), 1351–1363. https://doi.org/10.1104/ pp.111.172676
Sauvé, S., Tremblay, L., & Lavigne, P. (2004). The NMR solution structure of a mutant of the max b/HLH/LZ free of DNA: Insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Journal of Molecular Biology, 342(3), 813–832. https://doi.org/10.1016/j.jmb.2004.07.058
Schumacher, M. A., Goodman, R. H., & Brennan, R. G. (2000). The structure of a CREB bZIP somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. Journal of Biological Chemistry, 275(45), 35242–35247. https://doi.org/10.1074/jbc.M007293200
Scoville, A. G., Barnett, L. L., Bodbyl-roels, S., Kelly, J. K., & Lena, C. (2012). NIH Public Access, 191(1), 251–263. https://doi. org/10.1111/j.1469-8137.2011.03656.x.Differential
Sowdhamini, R., Shameer, K., Ambika, S., Varghese, S. M., Karaba, N., & Udayakumar, M. (2009). STIFDB Arabidopsis stress responsive transcription factor dataBase. International Journal of Plant Genomics, 2009. https://doi.org/10.1155/2009/583429
Sundar, A. S., Varghese, S. M., Shameer, K., Karaba, N., Udayakumar, M., & Sowdhamini, R. (2008). STIF: Identification of stressupregulated transcription factor binding sites in Arabidopsis thaliana. Bioinformation, 2(10), 431–437. https://doi. org/10.6026/97320630002431
Tominaga-Wada, R., Nukumizu, Y., Sato, S., Kato, T., Tabata, S., & Wada, T. (2012). Functional Divergence of MYB-Related Genes, WEREWOLF and AtMYB23 in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 76(5), 883–887. https://doi. org/10.1271/bbb.110811
Udvardi, M. K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., Town, C. D. (2007). Legume Transcription Factors: Global Regulators of Plant Development and Response to the Environment. Plant Physiology, 144(2), 538–549. https:// doi.org/10.1104/pp.107.098061
Wan, L., Yan, X., Chen, T., & Sun, F. (2012). Modeling RNA degradation for RNA-Seq with applications. Biostatistics, 13(4), 734–747. https://doi.org/10.1093/biostatistics/kxs001
Wei, C.-H., Harris, B. R., Li, D., Berardini, T. Z., Huala, E., Kao, H.-Y., & Lu, Z. (2012). Accelerating literature curation with text-mining tools: a case study of using PubTator to curate genes in PubMed abstracts. Database : The Journal of Biological Databases and Curation, 2012, bas041. https://doi.org/10.1093/database/bas041
Yoon, H. K., Kim, S. G., Kim, S. Y., & Park, C. M. (2008). Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol. Cells, 25(3), 438–445.
Zhou, J., Yang, Y., Yu, J., Wang, L., Yu, X., Ohtani, M., Zhuge, Q. (2014). Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. Journal of Plant Research, 127(2), 347–358. https://doi.org/10.1007/s10265-013-0597-8