2016, Número 3
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2016; 32 (3)
Aislamiento y caracterización de células mesenquimales derivadas de tejido adiposo
Galván CJA, Miranda RA, de León DJ, Macías AC, Baganet CA, Rondón CT, González IAI, Socarras FBB, Bencomo HA, Rivero JRA, Hernández RP
Idioma: Español
Referencias bibliográficas: 49
Paginas: 375-387
Archivo PDF: 229.95 Kb.
RESUMEN
Introducción: Existe un creciente interés científico en el potencial terapéutico de las
células madre mesenquimales derivadas de tejido adiposo (
ADSCs, en inglés). Estas
células son abundantes en el tejido adiposo, son de fácil obtención y con un alto
potencial de diferenciación hacia linajes celulares especializados incluyendo
adipocitos, osteocitos, condrocitos, miocitos, cardiomiocitos, tenocitos, vasos
sanguíneos y neuronas. Este trabajo se desarrolló con el objetivo de implementar en
el laboratorio un procedimiento para aislar y cultivar
ADSCs, con características que
corresponden a las informadas para este linaje celular.
Método: los precursores de células adiposas humanas se obtuvieron de tejido
subcutáneo abdominal. Las células se separaron enzimáticamente del tejido y se
decantaron por centrifugación, luego de cultivadas, se caracterizaron en su capacidad
de diferenciación y por su marcadores fenotípicos.
Resultados: Las
ADSCs aisladas se replicaron en estas condiciones de cultivo y
mantuvieron un fenotipo estable durante todo el período de estudio. Se comprobó su
potencial adipogénico y osteogénico
in vitro, como corresponde a las células madre
mesenquimales. El estudio por citometría de flujo mostró que estas células
expresan CD73, CD90 y CD105 y son negativas para los marcadores de linaje
hematopoyético CD34 y CD45. En los ensayos de inhibición
in vitro, las
ADSCs
demostraron su capacidad para inhibir la proliferación de células T humanas.
Conclusiones: La caracterización fenotípica y funcional de las
ADSCs obtenidas a partir del tejido adiposo abdominal demuestra que es posible la obtención mediante cultivo
in vitro de células mesenquimales humanas sin inducir diferenciación espontánea, manteniendo su integridad funcional y altos niveles de proliferación, lo que sienta las bases para el inicio de ensayos preclínicos y su uso futuro en la terapia
celular en nuestro país.
REFERENCIAS (EN ESTE ARTÍCULO)
Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer research. 2005 Apr;65(8):3035-9.
Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008 Jan;26(1):1-9.
Moshaverinia A, Xu X, Chen C, Ansari S, Zadeh HH, Snead ML, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials. 2014 Mar;35(9):2642-50.
Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005 Sep;54(3):132-41.
Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005 Oct;23(9):1357-66.
Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004;22(4):617-24.
Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfus Med Hemother. 2008;35(3):228-38.
Ha CW, Park YB, Chung JY, Park YG. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model. Stem Cells Transl Med. 2015 Sep;4(9):1044-51.
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002 Dec;13(12):4279-95.
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr;7(2):211-28.
Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998 Jul;16(4):406-13.
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol (Clifton, NJ). 2006;325:35-46.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytother. 2006;8:315 - 7.
De Ugarte D, Alfonso Z, Zuk P, Elbarbary A, Zhu M, Ashjian P. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol letters. 2003;89:267 - 70.
Kimbrel E, Kouris N, Yavanian G, Chu J, Qin Y, Chan A. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23:1611 - 24.
Abumaree M, Al Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 2012 Jun;8(2):375-92.
Selmani Z, Naji A, Gaiffe E, Obert L, Tiberghien P, Rouas-Freiss N, et al. HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation. 2009 May 15;87(9 Suppl):S62-6.
Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensebe L, Deschaseaux F. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells. 2013 Nov;31(11):2296-303.
Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am JReprod Immunol. 2012 Jan;67(1):1-8.
Ungerer C, Quade-Lyssy P, Radeke HH, Henschler R, Konigs C, Kohl U, et al. Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cells Dev. 2014 Apr 1;23(7):755-66.
Zhang L, Liu D, Pu D, Wang Y, Li L, He Y, et al. The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. Int J Mol Med. 2015 Apr;35(4):1003-10.
Squillaro T, Peluso G, Galderisi U. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplant. 2016;25(5):829-48. doi: 10.3727/096368915X689622.
Lopez-Santalla M, Mancheno-Corvo P, Menta R, Lopez-Belmonte J, DelaRosa O, Bueren JA, et al. Human Adipose-Derived Mesenchymal Stem Cells Modulate Experimental Autoimmune Arthritis by Modifying Early Adaptive T Cell Responses. Stem Cells. 2015 Dec;33(12):3493-503.
von Dalowski F, Kramer M, Wermke M, Wehner R, Rollig C, Alakel N, et al. Mesenchymal Stromal Cells for Treatment of Acute Steroid-Refractory GvHD: Clinical Responses and Long-Term Outcome. Stem Cells. 2016 Feb;34(2):357-66. doi: 10.1002/stem.2224.
English K, Wood KJ. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harbor perspectives in medicine. 2013 May;3(5):a015560.
Mizuno H, Hyakusoku H. Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med School. 2003 Aug;70(4):300-6.
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods (San Diego, Calif). 2008 Jun;45(2):115-20.
Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, et al. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol. 2007 Apr;211(1):121-30.
Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005 Dec 21;32(6):270-9.
Hollenberg CH, Vost A. Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 1969 Nov;47(11):2485-98.
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007 Jun 28;447(7148):1116-20.
Bunnell BA, Estes BT, Guilak F, Gimble JM. Differentiation of adipose stem cells. Methods Mol Biol(Clifton, NJ). 2008;456:155-71.
Portmann-Lanz CB, Schoeberlein A, Portmann R, Mohr S, Rollini P, Sager R, et al. Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. AZm J Obstet Gynecol. 2010 Mar;202(3):294 e1- e11.
den Haan MC, Grauss RW, Smits AM, Winter EM, van Tuyn J, Pijnappels DA, et al. Cardiomyogenic differentiation-independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischaemic mouse hearts. J Cell Mol Med. 2012 Jul;16(7):1508-21.
Ramachandran S, Suguihara C, Drummond S, Chatzistergos K, Klim J, Torres E, et al. Bone marrow-derived c-kit+ cells attenuate neonatal hyperoxia-induced lung injury. Cell Transplant. 2015;24(1):85-95.
Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo- Cremades M, Fuentes B, Cerdan S, et al. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013;4(1):11.
Bagno LL, Werneck-de-Castro JP, Oliveira PF, Cunha-Abreu MS, Rocha NN, Kasai- Brunswick TH, et al. Adipose-derived stromal cell therapy improves cardiac function after coronary occlusion in rats. Cell Transplant. 2012;21(9):1985-96.
Heo JS, Choi SM, Kim HO, Kim EH, You J, Park T, et al. Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience. 2013 May;238:305-18.
Pecanha R, Bagno LL, Ribeiro MB, Robottom Ferreira AB, Moraes MO, Zapata- Sudo G, et al. Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am. 2012 Apr 4;94(7):609-17.
Mezey E. The therapeutic potential of bone marrow-derived stromal cells. J Cell Biochem. 2011 Oct;112(10):2683-7.
Fidelis-de-Oliveira P, Werneck-de-Castro JP, Pinho-Ribeiro V, Shalom BC, Nascimento-Silva JH, Costa e Souza RH, et al. Soluble factors from multipotent mesenchymal stromal cells have antinecrotic effect on cardiomyocytes in vitro and improve cardiac function in infarcted rat hearts. Cell Transplant. 2012;21(5):1011-21.
Muroi K, Miyamura K, Okada M, Yamashita T, Murata M, Ishikawa T, et al. Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: a phase II/III study. Int J Hematol. 2016 Feb;103(2):243-50.
Fang B, Song Y, Liao L, Zhang Y, Zhao RC. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007 Dec;39(10):3358-62.
Fan X, Gay FP, Ong SY, Ang JM, Chu PP, Bari S, et al. Mesenchymal stromal cell supported umbilical cord blood ex vivo expansion enhances regulatory T cells and reduces graft versus host disease. Cytother. 2013 May;15(5):610-9.
Ringden O, Erkers T, Nava S, Uzunel M, Iwarsson E, Conrad R, et al. Fetal membrane cells for treatment of steroid-refractory acute graft-versus-host disease. Stem Cells. 2013 Mar;31(3):592-601.
English K, Mahon BP, Wood KJ. Mesenchymal stromal cells; role in tissue repair, drug discovery and immune modulation. Current drug delivery. 2014;11(5):561-71.
Popp FC, Fillenberg B, Eggenhofer E, Renner P, Dillmann J, Benseler V, et al. Safety and feasibility of third-party multipotent adult progenitor cells for immunomodulation therapy after liver transplantation--a phase I study (MISOT-I). Journal of translational medicine. 2011;9:124..
Cortinovis M, Casiraghi F, Remuzzi G, Perico N. Mesenchymal stromal cells to control donor-specific memory T cells in solid organ transplantation. Curr Opin Organ Transplant. 2015 Feb;20(1):79-85. doi: 10.1097/MOT.0000000000000145.
Casiraghi F, Perico N, Cortinovis M, Remuzzi G. Mesenchymal stromal cells in renal transplantation: opportunities and challenges. Nat Rev Nephrol. 2016 Apr;12(4):241-53. doi: 10.1038/nrneph.2016.7.