2016, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2016; 21 (1)
Fisiopatología de la hidrocefalia idiopática de presión normal (parte 1): hidrodinamia venosa y compliancia
Solís SO, López PJL, Ayala GM
Idioma: Español
Referencias bibliográficas: 60
Paginas: 45-54
Archivo PDF: 450.29 Kb.
RESUMEN
Esta revisión esta hecha en dos partes, la parte 1 describirá una de las teorías
involucradas en la fisiopatología de la Hidrocefalia Idiopática de Presión Normal
cuya importancia hace pensar como una de las principales, que es la afectación
y alteración del sistema Hidrodinámico cuyos componentes alteran los mecanismos
de homeostasis que tiene como control, siendo estos la ley de Monroe-Kelly
y el fenómeno de Windkessel. Al desestabilizar estos mecanismos de homeostasis
uno de los parámetros mas afectados será el mecanismo de compliancia, esta
se encarga en regular las fuerzas de sístole/diástole para que no existan fluctuaciones
entre estas y así brindando una perfusión cerebral adecuada que no fluctué.
Una vez alterado el mecanismo de compliancia, aparecerán altera- ciones en
el sistema hidrodinámico como el aumento en la presión venosa del seno sagital
superior (SSS), repercutiendo a su vez en el drenaje del líquido cefalorraquídeo
(LCR), por lo que la compliancia, no solo nos brinda un sistema de amortiguación
y distribución de fuerzas para que exista un flujo sanguíneo laminar adecuado,
sino que participa en el control adecuado de la entrada y salida de sangre al
encéfalo, en la absorción adecuada de LCR y en la perfusión del flujo sanguíneo
cerebral. Las limitaciones de nuestra revisión están dadas por la metodología de
nuestra búsqueda bibliográfica la cual fue realizada principalmente en PubMed
bajo los siguientes términos Mesh:
normal pressure hydrocephalus, hydrodinamics,
compliance, phisiopathology, windkessel.
REFERENCIAS (EN ESTE ARTÍCULO)
1.- Clive B Beggs. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Medicine 2013; 11: 142
2.- Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol 2008; 29: 198–203.
3.- Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal- pressure hydrocephalus. Neuroradiology 2002; 44: 740–8.
4.- Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL. The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol 2009; 24: 133–8.
5.- Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 2008; 50: 491–7.
6.- Putnam TJ, Adler A. Vascular architecture of the lesions of multiple sclerosis. Arch Neurol Psychiat 1937; 38:1–5.
7.- Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, Dall’Ara S, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2009; 80: 392–9.
8.- Zamboni P, Menegatti E, Conforti P, Shepherd S, Tessari M, Beggs C. Assessment of cerebral venous return by a novel plethysmography method. J Vasc Surg 2012; 56: 677–85.
9.- Zivadinov R, Poloni GU, Marr K, Schirda CV, Magnano CR, Carl E, et al. Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurol 2011; 11:128.
10.- Dawson JW. The histology of disseminated sclerosis. Trans Roy Soc Edinb 1916; 50: 517.
11.- Putnam TJ. Evidences of vascular occlusion in multiple sclerosis and encephalomyelitis. Arch Neurol Psychiatry 1937; 6: 1298–1321.
12.- Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 2007; 257: 62–6.
13.- Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 1995; 194: 469–76.
14.- Brown WR, Moody DM, Thore CR, Anstrom JA, Challa VR. Microvascular changes in the white mater in dementia. J Neurol Sci 2009; 283:28–31.
15.- Chung CP, Hu HH. Pathogenesis of leukoaraiosis: role of jugular venous reflux. Med Hypotheses 2010; 75: 85–90.
16.- Chung CP, Wang PN, Wu YH, Tsao YC, Sheng WY, Lin KN, et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol 2011; 69: 553–9.
17.- Bateman GA. Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypotheses 2004; 62: 182–7.
18.- Stephensen H, Tisell M, Wikkelso C. There is no transmantle pressure gradient in either communicating or non-communicating hydrocephalus. Neurosurgery 2002; 50: 763–3.
19.- Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 2005; 26: 1539–47.
20.- Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, Inglese M. White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci 2009; 282: 28–33.
21.- Mase M, Miyati T, Kasai H, Demura K, Osawa T, Hara M, et al. Noninvasive estimation of intracranial compliance in idiopathic NPH using MRI. Acta Neurochir Suppl 2008; 102: 115–8.
22.- Moody DM, Brown WR, Challa VR, Ghazi-Birry HS, Reboussin DM. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci 1997; 826:103–116.
23.- Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 2011; 37:56–74.
24.- Dalton CM, Brex PA, Jenkins R, Fox NC, Miszkiel KA, Crum WR, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry 2002; 73:141–7.
25.- Dalton CM, Miszkiel KA, O’Connor PW, Plant GT, Rice GP, Miller DH. Ventricular enlargement in MS: one-year change at various stages of disease. Neurology 2006; 66:693–8.
26.- Bradley WG. Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol 2000; 21:1586–90.
27.- Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 1998; 19: 1277–84.
28.- Sakakibara R, Hattori T, Uchiyama T, Yamanishi T. Urinary function in elderly people with and without leukoaraiosis: relation to cognitive and gait function. J Neurol Neurosurg Psychiatry 1999; 67: 658–60.
29.- Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7:1139–51.
30.- Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004; 127: 965–72.
31.- Manon Brundel, Jeroen de Bresser, Jeroen J van Dillen, L Jaap Kappelle. Cerebral microinfarcts: a systematic review of neuropathological studies. Cerebral Blood Flow Metabolism 2012;32:425–36
32.- Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689–701
33.- White L, Petrovitch H, Hardman J, Nelson J, Davis DG, Ross GW, et al. Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann NY Acad Sci 2002;977:9–23.
34.- Kalaria RN, Kenny RA, Ballard CG, Perry R, Ince P, Polvikoski T. Towards defining the neuropathological substrates of vascular dementia. J Neurol Sci 2004; 226: 75–80
35.- Kövari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, et al. Cortical micro- infarcts and demyelination affect cognition in cases at high risk for dementia. Neurology 2007;68:927–31.
36.- Berislav V. Zlokovic. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Natur Reviews Neuroscience 2011;12:723-38.
37.- Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57: 178–201
38.- Moskowitz M A, Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 2010; 67:181–198.
39.- Guo S, & Lo, E. H. Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 2009;40:S4–S7.
40.- Daneman R, Zhou L, Kebede A A, & Barres B A. Pericytes are required for blood brain barrier integrity during embryogenesis: A study showing that pericytes control the formation of the BBB during embryonic development. Nature 2010;468:562–6.
41.- Li F. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch: A study showing that N-cadherin mediates pericyte–endothelial attachment in the cerebral blood vessels, preventing microhaemorrhage. Dev Cell 2011;20:291–302.
42.- Bell R D. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68:409–427.
43.- Armulik A. Pericytes regulate the blood–brain barrier: A study that reveals a role for pericytes in the maintenance of the BBB in vivo during adulthood. Nature 2010;468:557–61.
44.- Saito M, Nishio Y, Kanno S, Uchiyama M, Hayashi A, Takagi M, et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2011;1:202–11.
45.- Ge Y, Grossman RI, Udupa JK, Babb JS, Nyul LG, Kolson DL. Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology 2001;220: 606–10.
46.- Ge Y, Grossman RI, Udupa JK, Wei L, Mannon LJ, Polansky M, et al. Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 2000;214:665–70.
47.- Bradley WG Jr, Whittemore AR, Kortman KE, Watanabe AS, Homyak M, Teresi LM, et al. Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 1991; 178:459–66.
48.- Bradley WG. Cerebrospinal fluid dynamics and shunt responsiveness in patients with normal-pressure hydrocephalus. Mayo Clin Proc 2002;77:507–8.
49.- O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 2004;75:441–7.
50.- Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 2000;21:1574–85.
51.- Miyati T, Mase M, Kasai H, Hara M, Yamada K, Shibamoto Y, S, et al. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2007;26:274–8.
52.- Williams H. The venous hypothesis of hydrocephalus. Med Hypotheses 2008;70:743–7.
53.- Williams H. A unifying hypothesis for hydrocephalus, Chiari malformation, syringomyelia, anencephaly and spina bifida. Cerebrospinal Fluid Res 2008;5:7.
54.- Nakahara Y, Ogata A, Takase Y, Maeda K, Okamoto H, Matsushima T, et al. Treatment of dural arteriovenous fistula presenting as typical symptoms of hydrocephalus caused by venous congestion: case report. Neurol Med Chir (Tokyo) 2011;51:229–32.
55.- Graff-Radford NR, Rezai K, Godersky JC, Eslinger P, Damasio H, Kirchner PT. Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 1987;50:1589–96.
56.- Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Péna A, Harris NG, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab 2004;24:17–23.
57.- Larsson A, Bergh AC, Bilting M, Arlig A, Jacobsson L, Stephensen H, et al. Regional cerebral blood flow in normal pressure hydrocephalus: diagnostic and prognostic aspects. Eur J Nucl Med 1994;21:118–23.
58.- Bradley WG Jr. Idiopathic normal pressure hydrocephalus: new findings and thoughts on etiology. AJNR Am J Neuroradiol 2008;29:1–3.
59.- Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 2002;50:534–43.
60.- Schroth G, Klose U. Cerebrospinal fluid flow, Pathological cerebrospinal fluid pulsations. Neuroradiology 1992; 35:16–24.