2016, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2016; 21 (1)
Interacción entre factores genéticosambientales y la epigénesis de la enfermedad de Parkinson
Gómez-Chavarín M, Torres-Ortiz MC, Perez-Soto G
Idioma: Español
Referencias bibliográficas: 73
Paginas: 32-44
Archivo PDF: 349.97 Kb.
RESUMEN
En esta revisión resumimos los avances recientes en la comprensión de la interacción
entre factores genéticos y ambientales relacionados con la neurodegeneración
en la enfermedad de Parkinson (EP). El descubrimiento de varios genes
responsables de formas familiares, ha permitido una mejor comprensión de las
vías moleculares implicadas en la degeneración neuronal selectiva en esta enfermedad.
Sin embargo, la gran mayoría de los casos ocurre de forma esporádica,
probablemente es el resultado de la interacción compleja entre gen y medio
ambiente. Consideramos varios factores ambientales, entre ellos, plaguicidas,
metales, lesiones en la cabeza, estilos de vida y hábitos dietéticos, que se han
asociado con un mayor riesgo de desarrollar la enfermedad o incluso con su
prevención o protección. Cientos de variantes genéticas han sido investigadas
como posibles factores de riesgo para las formas esporádicas, pero los resultados
son a menudo contradictorios, no repetidos o no concluyentes. Nuevos
enfoques de investigación en salud ambiental están revelando que en un futuro
podría químicamente inducirse cambios en la regulación génica, una vez ya entendida
la susceptibilidad del epigenoma humano; principalmente a los efectos
ambientales y dietéticos.
REFERENCIAS (EN ESTE ARTÍCULO)
Cervantes-Arriaga A, Rodríguez-Violante M, López-Ruiz M, Estrada-Bellmann I, Zuñiga-Ramírez C, Otero-Cerdeira E, et al. Caracterización de la enfermedad de Parkinson en México: estudio ReMePARK. Gaceta Médica de México. 2013;149:497-501.
Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet 2007;16:R183–R194.
Rosner S, Giladi N, Orr-Urtreger A. Advances in the genetics of Parkinson’s disease. Acta Pharmacol Sin 2008;29:21–34.
Shulman LM. Gender differences in Parkinson’s disease. Gend Med 2007;4:8–18.
Ragonese P, D’Amelio M, Savettieri G. Implications for estrogens in Parkinson’s disease: an epidemiological approach. Ann NY Acad Sci 2006;1089:373–382.
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alphasynuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–47.
Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha– synuclein in Parkinson’s disease, Nat Genet 1998;18: 106–8.
Zarranz JJ, AlegremJ, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55: 164–73.
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003;302: 841.
Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004;364: 1167–69.
Lorincz MT. Clinical implications of Parkinson’s disease genetics. Semin Neurol 2006;26: 492–8.
Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R,. et al. Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006;296: 661–70.
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 1998;392:605–608.
Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics: one model for Parkinson’s disease. Hum Mol Genet 2004;1: R127– R133.
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000;25:302–5.
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998;395: 451–2.
Liu Y, Fallon L, Lashuel LA, Liu Z, LansburyPT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002;111: 209–18.
Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, et al. UCHL1 Global Genetics Consortium. UCHL1 is a Parkinson’s disease susceptibility gene, Ann Neurol 2004;55: 512–521.
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK. Science 2004;304:1158–60.
Bonifati V, Rohe CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, et al. Italian Parkinson Genetics Network. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 2005;65:87–95.
Van Duijn CM, Dekker MG, Bonifati V, Galjaard RJ, Houwing- Duistermaat JJ, Snijders PJ, et al. Heutink P. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet. 2001;69:629–34.
Lockhart PJ, Lincoln S, Hulihan M, Kachergus J, Wilkes K, Bisceglio G, et al. DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function, J. Med Genet 2004;41: e22.
Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, Van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease, Neuron 2004;44:595–600.
West AB, Moore DJ, Biskup S, Bugayenko D, Smith WW, Ross CA, et al. Parkinson’s disease-associated mutations in leucine rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U.S.A. 2005;102: 16842–7.
Farrer MJ, Stone JT, Lin CH, Dachsel JD, Hulihan MM, Haugarvoll K, et al. Lrrk2 G2385R is an ancestral risk factor for Parkinson’s disease in Asia. Parkinsonism Relat Disord 2007;13: 89–92.
Hampshire DJ, Roberts E, Crow Y, Bond J, Mubaidin A, Wriekat AL, et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001;38: 680–2.
Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase, Nat Genet 2006;38: 1184–1191.
Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease, Hum Mol Genet 2005;14:2099–2111.
Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, et al. UCHL1 Global Genetics Consortium. UCHL1 is a Parkinson’s disease susceptibility gene, Ann Neurol 2004;55: 512–5.
Healy D.G., Abou-Sleiman P.M., Casas J.P., Ahmadi K.R., Lynch T. , Gandhi S., et al. UCHL-1 is not a Parkinson’s disease susceptibility gene. Ann Neurol 2006;59 627–33.
Lorincz MT. Clinical implications of Parkinson’s disease genetics, Semin Neurol 2006;26:492–8.
Tan EK. The role of common genetic risk variants in Parkinson disease. Clin Genet 2007;72;387–93.
Healy DG, Abou-Sleiman PM, Lees AJ, J.P. Casas JP, Quinn N, Bhatia K, et al. Tau gene and Parkinson’s disease: a case-control study and meta-analysis, J Neurol Neurosurg Psychiatry 2004;75:962–5.
McCulloch CC, Kay DM, Factor SA, Samii A, Nutt JC, Higgins DS, et al. Exploring gene-environment interactions in Parkinson’s disease, Hum Genet 2008;125:257–65.
Winkler S, Konig IR, Lohmann-Hedrich R, Vieregge P, Kostic V, Klein C. Role of ethnicity on the association of MAPT H1 haplotypes and subhaplotypes in Parkinson’s disease. Eur J Hum Genet 2007;15: 1163–8.
Mellick GD. CYP450, genetics and Parkinson’s disease: gene×environment interactions hold the key, J Neural Transm Suppl 2006;70:159–65.
Dick FD, De Palma G, Ahmadi A, Osborne A, Scott NW, Prescott GJ, et al. Geoparkinson Study Group, Gene– environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med 2007;64:673–80.
Menegon A, Board PG,. Blackburn AC, Mellick GD, Le Couteur DG. Parkinson’s disease, pesticides, and glutathione transferase polymorphism., Lancet 1998;352: 1344–6.
Wilk JB, Tobin JE, Suchowersky O, Shill HA, Klein C, Wooten GF, et al. Herbicide exposure modifies GSTP1 haplotype association to Parkinson onset age: the Gene PD Study, Neurology 2006;67:2206–10.
Borlak J., Reamon-Buettner SM. N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson’s disease. BMC Med Genet 2006;7:30.
A. Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, et al. CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease, Ann Neurol 2004;55:430–4.
Evangelou E, Maraganore DM, Ioannidis JP. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS ONE 2007;2: e196.
Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, et al. Parkinson disease in twins: an etiologic study. JAMA 1999;281:341–6.
Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999;46:598–605.
Liu B, Gao HM, Hon JS. Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 2003;111:1065–73.
Dick FD. Parkinson’s disease and pesticide exposures, Br Med Bull 200679:80:219–31.
Elbaz A. Parkinson’s disease and rural environment, Rev Prat 2007;57:37–39.
Dick FD, De Palma D, Ahmadi A, Scott NW, Prescott GJ Bennett J, et al. Geoparkinson study group. Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study, Occup Environ Med 2007;64; 666–672.
Finkelstein MM, Jerrett M. A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 2007;104:420–32.
Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J, et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease, Environ Health Perspect. 2006;114:1872–6.
Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, et al. Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 2007;64:990–7.
Hu G, Bidel S, Jousilahti P, Antikainen, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease, Mov Disord 2007;22:2242–8.
Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 2007;86:1486–1494.
Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 2005;65:1442–6.
Logroscino G, Sesso HD, Paffenbarger RS Jr., Lee IM. Physical activity and risk of Parkinson’s disease: a prospective cohort study. J Neurol Neurosurg Psychiatry 2006;77:1318–22.
Goldman SM, Tanner CM, Oakes D, Bhudhikanok BS. Gupta A, Langston JW. Head injury and Parkinson’s disease risk in twins. Ann Neurol 2006;60:65–72.
Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility, Nat Rev Genet 2007;8:253–62.
Santos-Rebouc CB¸ Pimentel MM. Implication of abnormal epigenetic patterns for human diseases, Eur J Hum Genet 2007;15:10–7.
Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci 2007;100:7–23.
Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. Environ Health Perspect 2007;115:1264–70.
Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 2007;13:9–16
Feinberg AP. Phenotypic plasticity and the epigenetics of human disease, Nature 2007;447:433–40.
Fuso A, Seminara L, Cavallaro RA, D’Anselmi R, Scarpa S. Sadenosylmethionine/ homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005;28:195–204.
Hitchler MJ, Wikainapakul K, Yu L, Powers K, Attatippaholkun W, Domann EP. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 2006;1:163–71.
Hitchlerand MJ, Domann FE. An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 2007;43:1023–36.
Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007;81:1304–15.
Reamon-Buettner SM, Borlak J. A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reprod Toxicol 2007;24:20–30.
Modgil S, Lahiri DK, Sharma VL, Anand A. Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014;29:3:9.
Gomez-Chavarin M, Díaz-Pérez R, Morales-Espinosa R, Fernandez-Ruiz J, Roldan-Roldan G, Torner C. Developmental effects of rotenone pesticide exposure on the rat nigro-striatal dopaminergic system. Salud Mental 2013;36:1-7.
Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database, Nat Genet 2007;39:17–23.
Wu J, Basha MR, Zawia NH. The environment, epigenetics and amyloidogenesis. J Mol Neurosci 2008;34: 1–7.
Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE 2007;2:e895.
Allen A. Epigenetic alterations and cancer: new targets for therapy, I Drugs 2007;10:709–12.