2016, Número 1
<< Anterior Siguiente >>
Arch Neurocien 2016; 21 (1)
Fisiopatología de la hidrocefalia idiopática de presión normal (parte 2): flujo sanguíneo cerebral, isquemia de la sustancia blanca profunda
Solís SO, Ayala GM, López PJL
Idioma: Español
Referencias bibliográficas: 56
Paginas: 55-63
Archivo PDF: 322.52 Kb.
RESUMEN
En el desarrollo de la hidrocefalia idiopática de presión normal (HIPN), existen
múltiples factores involucrados para que se establezca la enfermedad, uno de
estos que la literatura mas apoya es la alteración en el flujo sanguíneo cerebral
y la isquemia de la sustancia blanca profunda, estas modificaciones pueden ser
originadas por eventos previos de una enfermedad cerebrovascular, angiopatía
amiloidea, y arterias medulares (arterias perforantes de la sustancia blanca profunda)
escleróticas. Mirando estos cambios detenidamente veremos que por lo
general son regionales y que se acentúan principalmente en los vasos de los ganglios
basales y periventriculares (sustancia blanca profunda). A su vez, estos cambios
en el flujo regional traerán consecuencias como edema, acumulación de
productos de desecho como el beta-amiloide (βa), contribuyendo a una hipoxia
crónica. Una de las preguntas que más se pueden discutir en este tema es sobre
si los cambios en el flujo sanguíneo son la causa de estos transtornos o
simplemente son un epifenómeno. Otros autores mencionan que otro factor
simultáneo a la falla del desecho de productos tóxicos como el β-amiloide, son
daños a la Unidad Neurovascular (UNV), este daño es con frecuencia visto en la
enfermedad de Alzheimer y de ahí una de las razones por las cuales existe una
comorbilidad con la HIPN.
REFERENCIAS (EN ESTE ARTÍCULO)
1.- Bateman G.A. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol 2008;29:198–203.
2.- Borgesen SE,Gerris F. The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 1982;105: 65– 86
3.- Edwards RJ, Dombrowski SM, Luciano MG. Chronic hydrocephalus in adults. Brain Pathol 2004;14:325–36.
4.- Oi S, DiRoccoC. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 2006;22:662–9.
5.- Bradley WG Jr, Scalzo D, Queralt J. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 1996;198:523–9.
6.- Bateman G.A. Vascular compliance innormal pressure hydrocephalus. AJNR Am J Neuroradiol 2000;21:1574 –1585.
7.- Bateman G.A. The reversibility of reduced cortical vein compliance in normal- pressure hydrocephalus following shunt insertion. Neuroradiology 2003;45:65–70.
8.- Stephensen H, Tisell M, Wikkelso C. There is no transmantle pressure gradient in either communicating or non-communicating hydrocephalus. Neurosurgery 2002;50:763–73.
9.- Owler BK, Pickard JD. Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurol Scand 2001; 104:325–42.
10.- MathewNT, MeyerJS, HartmannA. Abnormal cerebrospinal fluid-blood flow dynamics: implications in diagnosis, treatment, and prognosis in normal pressure hydrocephalus. Arch Neurol 1975;32:657–64.
11.- Akiko Furuta, Nobuyoshi Ishii, Yasuo Nishihara, Akio Hone. Medullary arteries in aging and dementia. Stroke 1991: 22:442-6.
12.- De Reuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971;5:321-34.
13.- Fukuda H, Kobayashi S, Okada K, Tsunematsu T. Frontal white matter lesions and dementia in lacunar infarction. Stroke 1990;21:1143-9.
14.- Kalaria Raj N. Vascular basis for brain degeneration. Faltering controls and risk factors for dementia. Nutr Rev 2010;68(2):74–87.
15.- Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5: 347–60.
16.- Berislav V. Zlokovic. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature Reviews Neuroscience 2011;12:723-8.
17.- Bell R D. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68,409–27.
18.- Peppiatt C M, Howarth C, Mobbs P, & Attwell D. Bidirectional control of CNS capillary diameter by pericytes: a study showing that pericytes control the diameter of brain capillaries in response to signals from neurons. Nature 2006;443:700–4.
19.- Yemisci M. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Med 2009;15:1031–7.2
0.- Kuchibhotla K V, Lattarulo C R, Hyman B T, & Bacskai B J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009;323,1211–5.
21.- Takano T, Han X, Deane R, Zlokovic B, & Nedergaard M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann NY Acad Sci 2007;1097:40–50.
22.- Heppner Frank L, Ransohoff Richard M, Becher Burkhard. Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience 2015;16: 358-72.
23.- Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, Brown WR. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 2007;66: 337–45.
24.- Fernando MS, Simpson JE, Matthews F. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37:1391–1398.
25.- Pantoni L, Poggesi A, Basile AM. Leukoaraiosis predicts hidden global functioning impairment in nondisabled older people: the LADIS (Leukoaraiosis and Disability in the Elderly) Study. J Am Geriatr Soc 2006;54:1095–1101.
26.- Beach TG, Wilson JR, Sue LI,. Circle of Willis atherosclerosis: association with Alzheimer’s disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol 2007;113:13–21.
27.- Roher AE, Esh C, Kokjohn T, Sue L, Beach T. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology 2005; 65: 974.
28.- Bradshaw E M. CD33 Alheimer’s disease locus: altered monocyte function and amyloid biology. Nature Neurosci 2013;16:848-40.
29.- Moody DM, Thore CR, Anstrom JA, Challa VR, Langefeld CD, Brown WR. Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis. Radiology 2004;233:883–90.
30.- Brosseron F, Krauthausen M, Kummer M, & Henka M T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol 2014; 50: 534-44.
31.-Lee C Y, & Landreth G E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm 2010;117: 949-60.
32.- Streit W J, Sammons N W, Kuhns A J, & Sparks D L. Dystrophic microglia in the aging human brain. Glia 2004;45: 208-12.
33.- Luchsinger JA, Reitz C, Honig LS, Tang MX, Shea S, Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 2005;65:545–51.
34.- Manon Brundel, Jeroen de Bresser, Jeroen J van Dillen. Cerebral microinfarcts: a systematic review of neuropathological studies. Journal of Cerebral Blood Flow & Metabolism 2012;32:425–36.
35.- Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ, Mack WJ, et al. Neuropathologic substrates of ischemic vascular dementia. J Neuropathol Exp Neurol 2000;59:931–45.
36.- Rossi R, Joachim C, Geroldi C, Combrinck M, Esiri MM, Smith AD, et al. Association between subcortical vascular disease on CT and neuropathological findings. Int J Geriatr Psychiatry 2004;19:690–5.
37.- Longstreth Jr WT, Sonnen JA, Koepsell TD, Kukull WA, Larson EB, Montine TJ. Associations between microinfarcts and other macroscopic vascular findings on neuropathologic examination in 2 databases. Alzheimer Dis Assoc Disord 2009;23:291–4.
38.- Olichney JM, Ellis RJ, Katzman R, Sabbagh MN, Hansen L. Types of cerebrovascular lesions associated with severe cerebral amyloid angiopathy in Alzheimer’s disease. Ann NY Acad Sci 1997;826:493–7.
39.- Soontornniyomkij V, Lynch MD, Mermash S, Pomakian J, Badkoobehi H, Clare R, et al. Cerebral microinfarcts associated with severe cerebral beta- amyloid angiopathy. Brain Pathol 2010;20:459–67.
40.- De Reuck J, Deramecourt V, Cordonnier C, Leys D, Maurage CA, Pasquier F. The impact of cerebral amyloid angiopathy on the occurrence of cerebrovascular lesions in demented patients with Alzheimer features: a neuropathological study. Eur J Neurol 2011;18:913–8.
41.- Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
42.- Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007;69:2197–204.
43.- Schneider JA, Boyle PA, Arvanitakis Z, Bienias JL, Bennett DA. Subcortical infarcts, Alzheimer’s disease pathology, and memory function in older persons. Ann Neurol 2007;62:59–66.
44.- Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol 2008;64:168–76.
45.- Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA. Microinfarct pathology, dementia, and cognitive systems. Stroke 2011;42:722–7.
46.- Brian K. Owler, Shahan Momjian, Zofia Czosnyka, Marek Czosnyka, et al. Normal Pressure Hydrocephalus and Cerebral Blood Flow: A PET Study of Baseline Values. Cerebral Blood Flow Metabolism 2004;24:17–23.
47.- Owen A, Doyon J, Dagher A, Sadikot A, Evans A. Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 1998;121:949–65.
48.- Pang D, Altschuler E. Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 1994;35:643–55.
49.- Bradley WG Jr, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M. Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal pressure hydrocephalus. AJNR Am J Neuroradiol 1991;12:31–9.
50.- Koto A, Rosenberg G, Zingesser LH, Horoupian D, Katzman R. Syndrome of normal pressure hydrocephalus: possible relation to hypertensive and arteriosclerotic vasculopathy. J Neurol Neurosurg Psychiatry 1977;40:73–9.
51.- Bradley WG Jr, CSF Flow in the brain in the context of normal pressure hydrocephalus. AJNR 2015;36:831-838.
52.- Bateman GA, Levi CR, Schofield P. The pathophysiology of the aqueduct stroke volume in normal pressure hydrocephalus: can co-morbidity with other forms of dementia be excluded? Neuroradiology 2005;47:741–8.
53.- Marmarou A, Bergsneider M, Kling P. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57:17–28.
54.- Momjain S, Owler BK, Czosnyka Z. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004;127:965–72.
55.- Mamo HL, Meric PC, Ponsin JC. Cerebral blood flow in normal pressure hydrocephalus. Stroke 1987;18:1074–80.
56.- Kristensen B, Malm J, Fagerland M. Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 1996; 60:282–8.