2016, Número S1
<< Anterior Siguiente >>
Acta Med 2016; 14 (S1)
Tomografía por emisión de positrones/tomografía computada en tumores mamarios
Serna MJA, Cabezas OCA, Ramírez CP, Méndez GM, Ramírez AJL
Idioma: Español
Referencias bibliográficas: 44
Paginas: 13-21
Archivo PDF: 330.00 Kb.
RESUMEN
El cáncer de mama es el tumor más frecuente en mujeres occidentales, con una gran incidencia en edades de 45 a 55 años. Es responsable de la muerte de 40,000 mujeres cada año en los Estados Unidos y la segunda causa de muerte en mujeres en los países occidentales. A pesar de los avances en el tratamiento, así como en las técnicas quirúrgicas, radioterapia y quimioterapia adyuvante, la recurrencia tumoral y las metástasis se siguen presentando de manera frecuente. La estadificación temprana y la reestadificación certera del cáncer de mama recurrente es importante para definir la estrategia de tratamiento más apropiada y aumentar las posibilidades de curación. El PET/CT con 18F-FDG es una herramienta no invasiva útil para la estadificación y reestadificación de manera certera para pacientes con enfermedad localmente avanzada y con enfermedad metastásica a distancia. En los estadios tempranos 1 y 2 la estadificación ganglionar se realiza de manera certera con el ganglio centinela. Otra utilidad del PET/CT con 18F-FDG es la reestadificación locorregional y la evaluación de respuesta al tratamiento.
REFERENCIAS (EN ESTE ARTÍCULO)
Norma Oficial Mexicana NOM-041-SSA2-2011, Para la prevención, diagnóstico, tratamiento, control y vigilancia epidemiológica del cáncer de mama.
Ferrer-Rebolleda J, Sánchez-Jurado R, Cózar-Santiago, González-Sanchís A et al. Valoración de la eficacia de la mamografía por emisión de positrones en el diagnóstico inicial del cáncer de mama. Rev Esp Med Nucl. 2013; 32 Supl 1: 95.
Bourgeois AC et al. Role of positron emission tomography/computed tomography in breast cancer. Radiol Clin North Am. 2013; 51(5): 781-798.
Vercher-Conejero JL, Pelegrí-Martínez L, López-Aznar D, Cózar-Santiago Mdel P. Positron emission tomography in breast cancer. Diagnostics (Basel). 2015; 5 (1): 61-83.
Causer PA, Jong RA, Warner E, Hill K, Wong JW, Curpen BN, Plewes DB. Breast cancers detected with imaging screening in the BRCA population: emphasis on MR imaging with histopathologic correlation. Radiographics. 2007; 27 Suppl 1: S165-S182.
Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening. Radiographics. 2015; 35 (2): 302-315.
Gerbaudo VH. A case–based approach to PET/CT in oncology. Cambridge University Press; 2012: 267-273, 284-285.
Koolen BB, Valdés-Olmos RA, Elkhuizen PH, Vogel WV, Vrancken-Peeters MJ, Rodenhuis S et al. Locoregional lymph node involvement on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012; 135 (1): 231-240.
Evangelista L, Panunzio A, Cervino AR, Vinante L, Al-Nahhas A, Rubello D et al. Indeterminate pulmonary nodules on CT images in breast cancer patient: the additional value of 18F-FDG PET/CT. J Med Imaging Radiat Oncol. 2012; 56 (4): 417-424.
Niikura N, Costelloe CM, Madewell JE, Hayashi N, Yu TK, Liu J et al. FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist. 2011; 16 (8): 1111-1119.
Koolen BB, Vogel WV, Vrancken-Peeters MJ, Loo CE, Rutgers EJ, Valdés-Olmos RA. Molecular imaging in breast cancer: from whole-body PET/CT to dedicated breast PET. J Oncol. 2012; 2012: 438647.
Huynh PT, Lemeshko SV, Mahoney MC, Newell MS, Bailey L, Barke LD et al. ACR Appropriateness Criteria® stage I breast carcinoma. J Am Coll Radiol. 2012; 9 (7): 463-467.
Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyögg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol. 2010; 38 (1): 6-17.
Shiller SM, Weir R, Pippen J, Punar M, Savino D. The sensitivity and specificity of sentinel lymph node biopsy for breast cancer at Baylor University Medical Center at Dallas: a retrospective review of 488 cases. Proc (Bayl Univ Med Cent). 2011; 24 (2): 81-85.
Wahl RL, Siegel BA, Coleman RE, Gatsonis CG; PET Study Group. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol. 2004; 22 (2): 277-285.
Lucci A, McCall LM, Beitsch PD, Whitworth PW, Reintgen DS, Blumencranz PW et al. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J Clin Oncol. 2007; 25 (24): 3657-3663.
Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst. 2006; 98 (9): 599-609.
Fleissig A, Fallowfield LJ, Langridge CI, Johnson L, Newcombe RG, Dixon JM et al. Post-operative arm morbidity and quality of life. Results of the ALMANAC randomised trial comparing sentinel node biopsy with standard axillary treatment in the management of patients with early breast cancer. Breast Cancer Res Treat. 2006; 95 (3): 279-293.
Ashikaga T, Krag DN, Land SR, Julian TB, Anderson SJ, Brown AM et al. Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol. 2010; 102 (2): 111-118.
Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993; 11 (11): 2101-2111.
Humbert O, Cochet A, Coudert B, Berriolo-Riedinger A, Kanoun S, Brunotte F et al. Role of positron emission tomography for the monitoring of response to therapy in breast cancer. Oncologist. 2015; 20 (2): 94-104.
Morris PG, Ulaner GA, Eaton A, Fazio M, Jhaveri K, Patil S et al. Standardized uptake value by positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. Cancer. 2012; 118 (22): 5454-5462.
Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998; 16 (8): 2672-2685.
Redden M, Fuhrman G. Neoadjuvant chemotherapy in the treatment of breast cancer. Surg Clin North Am. 2013; 93 (2): 493-499.
Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008; 26 (5): 778-785.
Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006; 24 (34): 5366-5372.
Duch J, Fuster D, Muñoz M, Fernández PL, Paredes P, Fontanillas M et al. 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging. 2009; 36 (10): 1551-1557.
Kumar A, Kumar R, Seenu V, Gupta SD, Chawla M, Malhotra A et al. The role of 18F-FDG PET/CT in evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Eur Radiol. 2009; 19 (6): 1347-1357.
Martoni AA, Zamagni C, Quercia S, Rosati M, Cacciari N, Bernardi A et al. Early (18)F-2-fluoro-2-deoxy-d-glucose positron emission tomography may identify a subset of patients with estrogen receptor-positive breast cancer who will not respond optimally to preoperative chemotherapy. Cancer. 2010; 116 (4): 805-813.
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature. 2000; 406 (6797): 747-752.
Zucchini G, Quercia S, Zamagni C, Santini D, Taffurelli M, Fanti S et al. Potential utility of early metabolic response by 18F-2-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in a selected group of breast cancer patients receiving preoperative chemotherapy. Eur J Cancer. 2013; 49 (7): 1539-1545.
Koolen BB, Pengel KE, Wesseling J, Vogel WV, Vrancken-Peeters MJ, Vincent AD et al. FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast. 2013; 22 (5): 691-697.
Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am. 2005; 43 (1): 189-204.
Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001; 19 (11): 2797-2803.
Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001; 31 (1): 28-49.
Evangelista L, Panunzio A, Polverosi R, Ferretti A, Chondrogiannis S, Pomerri F et al. Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomed Pharmacother. 2012; 66 (6): 448-453.
Heusner TA, Kuemmel S, Koeninger A, Hamami ME, Hahn S, Quinsten A et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging. 2010; 37 (6): 1077-1086.
Mahner S, Schirrmacher S, Brenner W, Jenicke L, Habermann CR, Avril N et al. Comparison between positron emission tomography using 2-[fluorine-18]fluoro-2-deoxy-D-glucose, conventional imaging and computed tomography for staging of breast cancer. Ann Oncol. 2008; 19 (7): 1249-1254.
Bender H, Kirst J, Palmedo H, Schomburg A, Wagner U, Ruhlmann J et al. Value of 18fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res. 1997; 17 (3B): 1687-1692.
Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013; 31 (4): 262-269.
Sher A, Vercher-Conejero JL, Muzic RF Jr, Avril N, Plecha D. Positron emission tomography/magnetic resonance imaging of the breast. Semin Roentgenol. 2014; 49 (4): 304-312.
Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics. 2007; 27 Suppl 1: S215-S229.
Iagaru A, Young P, Mittra E, Dick DW, Herfkens R, Gambhir SS. Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clin Nucl Med. 2013; 38 (7): e290-e296.
Cheng J, Lei L, Xu J, Sun Y, Zhang Y, Wang X et al. 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med. 2013; 54 (3): 333-340.