2016, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2016; 152 (4)
Glucotransportadores (GLUT): Aspectos clínicos, moleculares y genéticos
Sandoval-Muñiz RJ, Vargas-Guerrero B, Flores-Alvarado LJ, Gurrola-Díaz CM
Idioma: Español
Referencias bibliográficas: 75
Paginas: 547-557
Archivo PDF: 753.32 Kb.
RESUMEN
La oxidación de la glucosa es la fuente más importante de obtención de energía para la célula, proceso que requiere
transportar la glucosa al interior de la célula. No obstante, la membrana celular no es permeable a moléculas polares
como la glucosa, por lo cual, su internalización debe llevarse a cabo mediante proteínas transportadoras acopladas a la
membrana. En células eucariotas, existen dos tipos de proteínas transportadoras: 1) los cotransportadores de Na+-glucosa
(SGLT) en los cuales el ion Na+ aporta la energía motriz para la internalización de la glucosa, y 2) los GLUT, que actúan
por difusión facilitada. Esta revisión se centrará en los 14 GLUT que hasta el momento se han descrito. A pesar de la
homología estructural de los GLUT, las alteraciones genéticas en estos provocan diferentes entidades clínicas específicas.
El objetivo de esta revisión es concentrar la información molecular y bioquímica disponible sobre cada GLUT, y el abordaje
clínico de los síndromes y patologías asociados con alteraciones en la expresión de los GLUT.
REFERENCIAS (EN ESTE ARTÍCULO)
Calvo MB, Figueroa A, Pulido EG, Campelo RG, Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol. 2010;2010. pii: 205357.
Kinnamon SC, Finger TE. A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci. 2013;7:264.
Scheepers A, Schmidt S, Manolescu A, et al. Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol. 2005;22(4):339-51.
Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990;13(3):198-208.
Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993;295(Pt 2):329-41.
Castrejón V, Carbó R, Martínez M. Mecanismos moleculares que intervienen en el transporte de la glucosa. REB. 2007;26(2):49-57.
Fredriksson R, Nordström KJ, Sthephansson O, Hägglund MG, Schiöth HB. The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families. FEBS Lett. 2008; 582(27):3811-6.
Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298(2):E141-5.
Wang D, Kranz-Eble P, De Vivo DC. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat. 2000;16(3):224-31.
Augustin R. Critical Review. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life. 2010; 62(5):315-33.
Verrotti A, D’Egidio C, Agostinelli S, Gobbi G. GLUT1 deficiency: when to suspect and how to diagnose? Eur J Paediatr Neurol. 2012;16(1):3-9.
Weber YG, Kamm C, Suls A, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959-64.
Arsov T, Müllen SA, Rogers S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol. 2012;72(5):807-15.
Gras D, Roze E, Caillet S, et al. GLUT1 deficiency syndrome: an update. Rev Neurol (Paris). 2014;170(2):91-9.
Klepper J, Leiendecker B. GLUT1 deficiency syndrome--2007 update. Dev Med Child Neurol. 2007;49(9):707-16.
Yang H, Wang D, Engelstad K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):996-1005.
Fukumoto H, Seino S, Imura H, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter- like protein. Proc Natl Acad Sci USA. 1988;85(15):5434-8.
Michau A, Guillemain G, Grosfeld A, et al. Mutations in SLC2A2 gene reveal hGLUT2 function in pancreatic β cell development. J Biol Chem. 2013;288(43):31080-92.
Ban N, Yamada Y, Someya Y, et al. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes. 2002;51(5):1409-18.
Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J. Fanconi-Bickel syndrome--a congenital defect of the liver-type facilitative glucose transporter. SSIEM Award. Society for the study of inborn errors of metabolism. J Inherit Metab Dis. 1998;21(3):191-4.
Leturque A, Brot-Laroche E, Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab. 2009;296(5):E985-92.
Sims¸ek E, Savas¸-Erdeve S, Sakamoto O, Dog˘anci T, Dallar Y. A novel mutation of the GLUT2 gene in a Turkish patient with Fanconi-Bickel syndrome. Turk J Pediatr. 2009;51(2):166-8.
Nair KM, Sakamoto O, Jagadeesh S, Nampoothiri S. Fanconi-Bickel Syndrome. Indian J Pediatr. 2012;79(1):112-4.
Janzen C, Lei MY, Cho J, Sullivan P, Shin BC, Devaskar SU. Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta. 2013;34(11):1072-8.
Flavahan WA, Wu Q, Hitomi M, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373-82.
Masin M, Vazquez J, Rossi S, et al. GLUT3 is induced during epithelial- mesenchymal transition and promotes tumor cell proliferation in non- -small cell lung cancer. Cancer Metab. 2014;2:11.
Burant CF, Davidson NO. GLUT3 glucose transporter isoform in rat testis: localization, effect of diabetes mellitus, and comparison to human testis. Am J Pshysiol. 1994;267(6):R1488-95.
Howitt BE, Brooks JD, Jones S, Higgins JP. Identification and characterization of 2 testicular germ cell markers, Glut3 and CyclinA2. Appl Immunohistochem Mol Morphol. 2013;21(5):401-7.
Vittori A, Breda C, Repici M, et al. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington’s disease. Hum Mol Genet. 2014;23(12):3129-37.
Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5(4):237-52.
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34(2):121-38.
Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267-77.
Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15(5):585-94.
Foley KP, Klip A. Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open. 2014;3(5):314-25.
Graham TE, Yang Q, Blüher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354(24):2552-63.
Graham TE, Kahn BB. Tissue specific alterations of glucose transport and molecular mechanisms of inter tissue communication in obesity and type 2 diabetes. Horm Metab Res. 2007;39(10):717-21.
King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877-94.
American Diabetes Association. Standards of medical care in diabetes 2014. Diabetes Care. 2014;37(1):S14-80.
Rochester CD, Akiyode O. Novel and emerging diabetes mellitus drug therapies for the type 2 diabetes patient. World J Diabetes. 2014;5(3): 305-15.
Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab. 2005;2(3):179-89.
Zilly FE, Sørensen JB, Jahn R, Lang T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 2006;4(10):e330.
Lin Y, Sun Z. Current views on type 2 diabetes. J Endocrinol. 2010; 204(1):1-11.
Powers AC. Diabetes Mellitus. En: Harrison Principios de Medicina Interna. Vol. 1. 17.a ed. Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL (editores). McGraw Hill Inc.: New York, EUA; 2008.
Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific rewiev. JAMA. 2002;287(3):360-72.
Guzmán-Juárez N, Madrigal-Bujaidar E. Revisión de las características clínicas, metabólicas y genéticas de la diabetes mellitus. Bioquímica. 2003;28(2):14-23.
Kayano T, Burant CF, Fukumoto H, et al. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990; 265(22):13276-82.
Medina-Villaamil V, Aparicio-Gallego G, Valbuena-Rubira L, et al. Fructose transporter GLUT5 expression in clear renal cell carcinoma. Oncol Rep. 2011;25(2):315-23.
Godoy A, Ulloa V, Rodríguez F, et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: UItrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol. 2006;207(3):614-27.
Barone S, Fussell SL, Singh AK, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem. 2009;284(8):5056-66.
Doege H, Bocianski A, Joost HG, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J. 2000;350(3):771-6. Note: Erratum: Biochem J. 2001;358:791-2.
Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18(4): 247-56.
Schürmann A. Insight into the “odd” hexose transporters GLUT3, GLUT5, and GLUT7. Am J Physiol Endocrinol Metab. 2008;295(2):E225-6.
Manolescu AR, Augustin R, Moley K, Cheeseman C. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol. 2007;24(2):455-63.
Carayannopoulos MO, Chi MM, Cui Y, et al. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci USA. 2000;97(13):7313-8.
Debosch BJ, Chen Z, Saben JL, Finck BN, Moley KH. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macroesteatosis. J Biol Chem. 2014;289(16):10989-98.
Doege H, Schürmann A, Bahrenberg G, Brauers A, Joost HG. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000;275(21):16275-80.
Chong MS, Goh LK, Lim WS, et al. Gene expression profiling of peripheral blood leukocytes shows consistent longitudinal downregulation of TOMM40 and upregulation of KIR2DL5A, PLOD1, and SLC2A8 among fast progressors in early Alzheimer´s disease. J Alzheimers Dis. 2013;34(2):399-405.
Phay JE, Hussain HB, Moley JF. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;66(2):217-20.
Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283(40):26834-8.
Le MT, Shafiu M, Mu W, Johnson RJ. SLC2A9--a fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant. 2008;23(9):2746-9.
Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83(6):744-51.
Mou LJ, Jiang LP, Hu Y. A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior reversible encephalopathy syndrome. J Nephrol. 2015;28(3):387-92. [Epub 2014 Mar 19].
Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8(2):113-28.
McVie-Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics. 2001;72(3):113-7.
Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89(1):3-9.
Jiang YD, Chang YC, Chiu YF, et al. SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PAD in type 2 diabetes. BMC Med Genet. 2010;11:126.
Callewaert BL, Willaert A, Kerstjens-Frederikse WS, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150-8.
Rogers S, Macheda ML, Docherty SE, et al. Identification of a novel glucose transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab. 2002;282(3):E733-8.
Di Daniel E, Mok MH, Mead E, et al. Evaluation of expression and functions of the H+/myo-inositol transporter HMIT. BMC Cell Biol. 2009;10:54.
Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int. 2012;61(2):187-94.
Satake W, Nakabayashi Y, MizutaI I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factor for Parkinson´s disease. Nat Genet. 2009;41(12):1303-7.
Bankovic J, Stojsic J, Jovanovic D, et al. Identifications of genes associated with non-small-cell lung cancer promotion and progression. Lung Cancer. 2010;67(2):151-9.
Gao J, Nalls MA, Shi M, et al. An exploratory analysis on gene-environment interactions for Parkinson disease. Neurobiol Aging. 2012;33(10):2528.e1-6.
Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002;80(6):553-7.
Wang W, Yu JT, Zhang W, et al. Genetic association of SLC2A14 polymorphism with Alzheimer´s disease in a Han Chinese population. J Mol Neurosci. 2012;47(3):481-4.