2005, Número 4
<< Anterior Siguiente >>
Rev Mex Neuroci 2005; 6 (4)
Estructura y función de los receptores acetilcolina de tipo muscarínico y nicotínico
Flores SME, Segura TJE
Idioma: Español
Referencias bibliográficas: 60
Paginas: 315-326
Archivo PDF: 426.95 Kb.
RESUMEN
La acetilcolina (AC) fue el primer neurotransmisor caracterizado tanto en el sistema nervioso periférico (SNP) como en el sistema nervioso central (SNC) de los mamíferos, el cual participa en la regulación de diversas funciones como fenómenos de activación cortical, el paso de sueño a vigilia y procesos de memoria y asociación. La AC se sintetiza a partir de la colina y del acetil CoA, en una reacción catalizada por la colina acetiltranferasa (CAT) y existen mecanismos que regulan de manera precisa su síntesis y liberación. Las técnicas de clonación molecular han permitido la identificación de dos tipos de receptores: ionotrópicos (nicotínicos) y metabotrópicos (muscarínicos) todos ellos acoplados a proteínas G. Los receptores M1, M2 y M3 están acoplados a la activación de proteínas Gs, con la consecuente producción del segundo mensajero AMPc. Los receptores M2 y M4 inhiben la formación de AMPc, activan canales de K+ y reducen la entrada de iones de Ca++ a través de canales dependientes del voltaje, efectos mediados por proteínas G (Gai y Gao). Los receptores de acetilcolina se encuentran ampliamente distribuidos en diversas áreas del SNC y en el SNP, en donde cada uno de ellos presenta un patrón de expresión temporal y espacial particular, los cuales pueden sobreponerse durante el desarrollo y son responsables de las diversas acciones fisiológicas de la acetilcolina. El estudio de los sistemas y receptores colinérgicos del SNC ha generado gran interés, debido a que diversas alteraciones en la transmisión colinérgica han sido relacionadas, directa o indirectamente, con trastornos severos como la enfermedad de Alzheimer y la de Parkinson.
REFERENCIAS (EN ESTE ARTÍCULO)
Díaz Hernández M, Gualix J, Gómez Villafuertes R, Castro R, Pintor J, Miras Portugal MT. Receptores nicotínicos neurales: interacción con receptores purinérgicos. Anal Real Acad Farm 2000; 66: 1-21.
Watting KJ. The RBI handbook of receptor classification and signal transduction. 3rd Ed. RBI; 1998.
Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? TINS 1999; 22-6, 273-80.
Mesulam MM. Cholinergic pathways and the ascending reticular activating system of the human brain. Ann NY Acad Sci 1995; 757: 169-79.
Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobio 1997; 53: 199-237.
McMahan UJ. The structure and regulation of agrin. In: Koelle GB. Symposium on the cholinergic synapse. Life Science, Vol. 50. New York: Pergamon Press; 1992, p. 93-4.
Albuquerque EX. Abstracts of International Symposium on the Cholinergic Synapse. Baltimore: University of Maryland Press; 1994. (Unedited)
Löffelholtz K. Ninth International Symposium on Cholinergic Mechanisms. Mainz; 1995 (In press).
Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 1982; 5: 57-106.
Südhof TC. The synaptic vesicle: a cascade of protein interactions. Nature 1995; 375: 645-53.
Receptor and ion channel nomenclature. Trends Pharmacol Sci 1998; 1: 1-98.
Changeux JP, Devillers-Thiéry A. Chemouilli P. The acetylcholine receptor: an “allosteric” protein engaged in intracellular communication. Science 1984; 225: 1335-45.
Unwin N. Acetylcholine receptor channel imaged in the open state. Nature 1995; 373: 37-43.
Ashkenazy A, Peralta EG. Muscarinic acetylcholine receptors. In: Peroutka SJ (Ed.). Handbook of receptors and channels. G protein-coupled receptors. Boca Raton, FL: CRC Press; 1994, p. 1-27.
Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995; 9: 619-25.
Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV. Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 2003; 64: 1444-51.
Duclert A, Chengeux JP. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev 1995; 75: 339-68.
Richmond JE, Jorgensen EM. One GABA and two acetylcholine receptors function at the C elegans neuromuscular junction. Nat Neurosci 1999; 2: 791-7.
Watson S, Arkinstall S (Eds.). The G-protein linked receptor facts book. London: Academic Press; 1994.
Cooper JR, Bloom FE, Roth RH. The biochemical basis of neurpharmacology. New York/Oxford: Oxford University Press; 1996.
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. Garland, New York, London; 1994.
Scott JD, Soderling TR. Serine/threonine protein kinases. Curr Opin Neurobiol 1992; 2: 289-95.
Mujica AO, Hankeln T, Schimidt ER. A novel serine/threonine kinase gene, STK33, on human chromosome 11P15.3*1. Gene 2001; 280: 175-81.
Ximmerman AL. Cyclic nucleotide gated channels. Curr Opin Neurobiol 1995; 5: 296-303.
Zimmerman H. Synaptic transmission, cellular and molecular basis. Thieme & Oxford, Sttutgart & New York; 1993.
Chung DM. Neurotransmitter receptors and phophoinositide turnover. Ann Rev Pharmacol Toxicol 1989; 29: 71-110.
Taylor CW. The role of G proteins in transmembrane signaling. Biochem J 1990; 272: 1-13.
Chen CY, Cordeaux Y, Hill SJ, King JR. Modelling of signalling via G-protein coupled receptors: pathway-dependent agonist potency and efficacy. Bull Math Biol 2003; 65: 933-58.
Exton JH. Regulation of phophoinositide phospholipase by hormones, neurotransmitters and other agonist linked to G-proteins. Annu Rev Pharmacol Toxicol 1996; 36: 481-509.
Exton JH. Cell signaling through guanine-nucleotide-binding regulatory proteins (G-proteins) and phospholipases. Eur J Biochem 1997; 243: 10-20.
Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001; 70: 281-312.
Berridge M. Inositol truphosphate and calcium signaling. Nature 1993; 361: 315-25.
Berridge MJ. Cardiac calcium signaling. Biochem Soc Trans 2003; 31: 930-3.
Berridge M. elementary and global aspects of calcium signaling. J Physiol 1997; 499: 291-306.
Furuchi T, Koda K, Miyawaki A, Mikoshiba K. Intracellular channels. Curr Opin Neurobiol 1994; 4: 294-303.
Pozzan T, Rizzuto R, Volpe P, Mendolesi J. Molecular and cellular physiology of intracellular calcium stores. Pharmacol Rev 1994; 74: 595-636.
Taylor CW, Marshall ICB. Calcium and inositol 1, 4, 5-triphosphate receptors: a complex relationship. Trends Biochem Sci 1992; 145: 109-18.
Taylor CW, Taynor D. Calcium and inositul trisphosphate receptors. J Membrane Biol 1995; 145: 109-18.
Iino M. Functional properties of inositol 1, 4, 5-trisphosphate receptor and Ca2+ signaling. Soc Gen Physiol Ser 1996; 51: 67-73.
Watling KJ, Kebabian JW, Neumeyer JL. The RBI handbook of receptor classification and signal transduction. Natick: Research Biochemical’s International; 1995 p. 196.
Clapham DE, Neer EJ. G protein bg subunits. Annu Rev Pharmacol Toxicol 1997; 37: 167-203.
Inanova-Nikolova TT, Breitwieser GE. Effector contributions to G bg-mediated signaling as revealed by muscarinic potassium channel gating. J Gen Physiol 1997; 109: 245-53.
Lenovere N, Changeux JP. Molecular evolution of the nicotinic acetylcholine subunit family: an example of multigene family in excitable cells. J Mol Evolution; 1995; 40: 155-72.
Tsunoyama K, Gojobori T. Evolution of nicotinic acetylcholine receptor subunits. Mol Biol Evol 1998; 15: 158-27.
Deneris ES, Connolly J, Rogers SW, Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. TIPS 1991; 12: 34-40.
McDermot AM, Role LW, Siegelbaum SA. Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 1999; 22: 443-85.
Mier A, Ginsburg S, Butkevich A, Kachalsky S, Kaiseman I, Ahdut R, Demirgoren S, Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79: 1019-88.
Wu LG, Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 1997; 20: 204-12.
Wonnacott S. Presynaptic nicotinic Ach receptors. TINS 1997; 20-2, 92-8.
Gallardo KA, Leslie FM, Nicotine-stimulated release of [3H] norepinephrine from fetal rat locus coeruleus cells in culture. J Neurochem 1998; 70: 663-70.
Bosboom JL, Stoffers D, Wolters ECh. The role of acetylcholine and dopamine in dementia and psychosis in Parkinson’s disease. J Neural Transm 2003; 65(Suppl): 185-95.
Marubio LM, Arroyo-Jiménez MM, Cordero-Erauskin M, Léna C, Le Novêre N, Kerchove D’exaerde A, Huchet M, Damaj MI, Changeux J-P. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999; 398: 805-10.
Peter BR, Christian HF. Functional heterogeneity of central cholinergic systems. Psychopahrmacology-The Fourth Generation of Progress 2000. Available at: http://www.acnp.org/g4/gN401000013/Default.htm
Korczyn AD. Parkinson’s disease. Psychopharmacology-The fourth generation of progress 2000. Available at: http://www.acnp.org/g4/GN401000142/Default.htm
McNamara P, Durso R, Brown A, Lynch A. Counterfactual cognitive deficit in persons with Parkinson’s disease. J Neurol Neurosurg Psychiatri 2003; 74: 1065-70.
Isella V, Iurlaro S, Piolti R, Ferrarese C, Frattola L, Appollonio I, Melzi P, Grimaldi M. Physical anhedonia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 1308-11.
Malcolm P, Nigel JMB. International Union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998; 50: 279-90.
Eglen RM, Choppin A, Dillon MP, Hegde S. Muscarinic receptor ligands and their therapeutic potential. Curr Opin Chem Biol 1999; 3: 426-32.
Frederick JE, William RR, Henry IYG. Molecular biology, pharmacology and brain distribution of suntypes of the muscarinic receptor.Psychopharmacology-The Fourth Generation of Progress 2000. Acailable in: http://www.acnp.org/g4/
Zufall F, Shepherd GM, Barnstable CJ. Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 1997; 7: 404-412.