2016, Número 1
<< Anterior Siguiente >>
Rev Esp Med Quir 2016; 21 (1)
Estrategias de regeneración de la córnea con células troncales epiteliales limbales
Téllez-González MA, Gutiérrez-Salinas J, Suárez-Cuenca JA, Mondragón- Terán P
Idioma: Español
Referencias bibliográficas: 40
Paginas: 24-30
Archivo PDF: 503.12 Kb.
RESUMEN
Las células troncales epiteliales limbales son células unipotentes que
se localizan en el limbo esclerocorneal. En las últimas décadas se ha
demostrado que estas células tienen un papel importante en el mantenimiento
y renovación de la córnea. Su ausencia en este tejido llega a
generar complicaciones como la pérdida de transparencia, insuficiencia
regenerativa e incluso distintos síndromes. Su derivación y cultivo
in vitro es una estrategia potencial en
Medicina regenerativa; una vez
establecidas las condiciones experimentales óptimas para generar su
cultivo en 3D se puede realizar experimentación traslacional en forma
de pruebas clínicas, mismas que podrán proveer soluciones a distintos
problemas visuales.
REFERENCIAS (EN ESTE ARTÍCULO)
Can A, A concise review on the classification and nomenclature of stem cells. Turk J Hematol 2008;25:57-9.
Mummery C, WilmutSI, Van de Stolpe A, Roelen BAJ,Stem Cells Scientific Facts and Fiction: What Are Stem Cells. London, Elservier 2011; pp:54-66.
Obokata H, & Vacanti CA. Principles of Tissue Engineering, Stem Cells in Tissue Engineering. London, Elservier. 2014;31:595- 608.
Holland S, Leba CQZ, Zoloth L. The Human Embryonic Stem Cell: Science, Ethics and Public Policy. 1ª Ed. USA, 2001; pp:1-50.
Amat D, Becerra J, Medina MA, Quesada AR and Marí- Beffa M, Stem Cell Therapies: Embryology Updates and Highlights on Classic Topics: Málaga, InTech. España. 2012;8:173-187.
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L., et al. Molecular Cell Biology. 5ª ED. México, Panamericana 2005;22:900-908.
Surani MA, Human Germline: A New Research Frontier. Stem Cells Reports 2015;4(6):955-960.
Kinoshita M. How are pluripotent cells captured in culture? Reprod Med Biol 2015;14:85-98.
Evans MJ and Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. 1981; Nature 292: 154–156.
Silverthorn DU, Johnson BR, Garrison CW, Human Physiology. 4ª Edición. México D.F., Panamericana 2007; 3:81-84.
Burgess R, Stem Cells Handbook: Introduction to Stem Cells. 2ª Edición. EUA, NY, Human Press.2013
Potten CS, De Rooij DG, Van Dissel E, Stem Cells: Regulation of proliferation and diferentiation of the stem cells in the male germ line. 1ª Edición. California EUA, Academic Press. 1997:283-315.
Yamanaka S, A Fresh LooK at iPs Cells. Cell 2009;137: 13-17
Secker GA and Daniels JT, StemBook: Limbal epithelial stem cells of the cornea. 1ª Edición. The Stem Cell Research Community. 2009 Stem Book, doi/10.3824/stembook.1.48.1
Kelly EB. Stem Cells. 1ª Edición. USA: Green Wood Press, 200;pp:215
Osei-BempongCh, Henein Ch, Ahmad S, Culture conditions for primary human limbal epithelial cells.Regen Med 2012;4(3):461-470.
Davenger M, Evensen A. Role of the pericorneal papillary structure in the renewal of corneal epithelium. Nature 1971;229(5286):560-1.
Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005;89:529–532.
Daniels JT, Harris A, Mason C, Corneal epithelial stem cells in health and disease. Stem Cell Rev 2006;2(3):247- 254.
Romano AC, España EM, Yoo SH, Budak MT, Wolosin JM, Tseng SC, Different cell sized in human limbal and central corneal basal epithelia measured by confocal microscopy and flowcytometry. Invest Ophthalmol Vis Sci 2003;44:5125–5129.
Chen Z, De Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ, Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004;22:355–366.
Barrandon Y, Green H, Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl AcadSci 1987;84:2302–2306.
Kurpakus MA, Stock EL, Jones JC, Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci 1990;3:448–456.
Pajoohesh-Ganji A, Stepp MA, In search of markers for the stem cells of the corneal epithelium. Biol Cell 2005;97:265– 276.
Potten CS, Loeffler M Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990;110:1001–1020.
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJet al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. NatMed 2001;9:1028-1034.
Watanabe K, Nishida k, Masayuki Y, Terumasa U, Taizo S, Kazuaki Y, et al. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 2004;565:6–20.
Pellegrini G, Dellambra E, Golisano O,Martinelli E, Fantozzi I, Bondaza S, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 2001;98:3156–3161.
Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–718.
Di Lorio E., Barbaro V., Ruzza A., Ponzin D., Pellegrini G., De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration.Proc. Natl. Acad. Sci. USA. 2005;102:9523–9528.
West JD, Dorà JN, Collinson JM, Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells 2015;7(2):281-299.
Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536-9.
Kinoshita S, Friend J, Thoft RA. Sex chromatin of donor corneal epithelium in rabbits. Invest Ophthalmol Vis Sci 1981;21:434–441.
Tseng SC. Concept and application of limbal stem cells. Eye 1989;3:141–157.
Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol 2000;44(5):415–425.
Organización Mundial de la Salud.[OMS] (2010) Blindness. Disponible en: http://www.who.int/blindness/data_maps/ VIFACTSHEETGLODAT2012_2.pdf
Ahmad S, Kolli S, Lako M, Figueiredo F, Daniels JT. Stem Cell Therapies For Ocular Surface Disease. Drug Discov Today 2010;15;7-8:306-331.
Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ, Daniels JT. Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophtalmology 2008;115:1899-1997.
Mondragon-Teran P, Baboo J, Mason C, Lye JG and Veraitch FS. The full spectrum of physiological oxygen tensions and step-changes in oxygen tension affects the neuronal differentiation of embryonic stem cells. Biotechnology Progress 2011;27(6):1700–1708.
Mondragon-Teran Paul, Lye JG, and Veraitch FS. Lowering oxygen tension enhances the differentiation of mouse embryonic stem cells into neuronal cells. Biotechnology Progress 2009;25(5):1480-1488.