2015, Número 2
<< Anterior Siguiente >>
Rev Esp Med Quir 2015; 20 (2)
Acción neuroinflamatoria y neurotrófica de las quimiocinas durante un proceso isquémico cerebral
Blanco-Álvarez VM, Soto-Rodríguez G, González-Barrios JA, Beltrán-Galindo O, Martínez-Fong D, León-Chávez BA
Idioma: Español
Referencias bibliográficas: 36
Paginas: 184-192
Archivo PDF: 660.00 Kb.
RESUMEN
El cerebro es muy vulnerable ante la hipoxia y la isquemia y los mecanismos de daño han sido estudiados; sin embargo, la respuesta neuroinmunológica ha mostrado tener una función dual, donde puede causar tanto inflamación como neurogénesis. El proceso inflamatorio durante la isquemia cerebral implica la participación de la glía y de la microglía, mediando la migración, la infiltración y la acumulación de leucocitos al parénquima cerebral durante la isquemia. En la enfermedad cerebrovascular se ha demostrado la expresión de citocinas (IL-1β, TNFα, IFNγ) y de quimiocinas como CCL2 (MCP-1), CCL5 (RANTES) y CXCL1 (GRO-α) que precede a la infiltración de los leucocitos hacia la lesión isquémica, actuando a través de sus receptores CCR2, CCR5 y de CXCR2, respectivamente. La inflamación contribuye a la lesión tisular durante la fase temprana de la respuesta hipóxica-isquémica y durante el proceso de cicatrización en la fase tardía de la isquemia cerebral. Se ha buscado utilizar nuevos medicamentos que puedan bloquear la respuesta neuroinmunológica, en especial la transcripción de quimiocinas y por ende la activación de glía y microglía que podría ser importante para la recuperación del paciente con ictus isquémico y restaurar la funcionalidad del tejido cerebral; sin embargo, la neurogénesis puede ser afectada. Hemos centrado esta revisión en la acción neuroinflamatoria y neurogénica, incluyendo la acción sobre la proliferación, migración y diferenciación de las células progenitoras neuronales inducidas por quimiocinas CCL2, CCL5 y CXCL1 en la respuesta neuroinflamatoria durante un proceso de isquemia cerebral.
REFERENCIAS (EN ESTE ARTÍCULO)
Gusev EI, Skvortsova VI, & Martynov MI. [Cerebral stroke: problems and solutions]. Vestn. Ross. Akad. Med. Nauk44-48 (2003).
Bajetto A, Bonavia R, Barbero S, Florio T & Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol.22, 147-184 (2001).
Ormstad H, Aass H.C., Amthor K.F., Lund-Sorensen N., & Sandvik L. Serum cytokine and glucose levels as predictors of poststroke fatigue in acute ischemic stroke patients. J Neurol 258, 670-676 (2011).
Losy J, Zaremba J & Skrobanski P. CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathol 43, 97-102 (2005).
Puma C, Danik M, Quirion R, Ramon F, & Williams S. The chemokine interleukin-8 acutely reduces Ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J. Neurochem.78, 960-971 (2001).
Lippert U, Zachmann K, Henz BM &Neumann C. Human T lymphocytes and mast cells differentially express and regulate extra- and intracellular CXCR1 and CXCR2. Exp. Dermatol.13, 520-525 (2004).
Brait VH et al. Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain Res.1372, 169-179 (2011).
Chapman AL, Skaff O, Senthilmohan R, Kettle AJ & Davies MJ. Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Biochem. J.417, 773-781 (2009).
Denes A, Thornton P, Rothwell NJ & Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav. Immun.24, 708-723 (2010).
Mirabelli-Badenier M, et al. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb. Haemost.105, 409-420 (2011).
Lim JK, Burns JM, Lu W & DeVico AL. Multiple pathways of amino terminal processing produce two truncated variants of RANTES/CCL5. J. Leukoc. Biol.78, 442-452 (2005).
Appay,V. & Rowland-Jones,S.L. RANTES: a versatile and controversial chemokine. TrendsImmunol.22, 83-87 (2001).
von HP, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation103, 1772-1777 (2001).
Krishnadasan B, et al. Beta-chemokine function in experimental lung ischemia-reperfusion injury.Ann. Thorac. Surg.77, 1056-1062 (2004).
Terao S, et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke39, 2560-2570 (2008).
Denes A, et al. Proliferating resident microglia after focal cerebral ischaemia in mice. J. Cereb. Blood Flow Metab27, 1941-1953 (2007).
Torres-Munoz JE, Van WC, Keegan MG, Bookman RJ & Petito C.K. Gene expression profiles in microdissected neurons from human hippocampal subregions. Brain Res. Mol. Brain Res.127, 105-114 (2004).
Sorce S, et al. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br. J. Pharmacol.160, 311-321 (2010).
Babcock AA, Kuziel WA, Rivest S & Owens T. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J.Neurosci.23, 7922-7930 (2003).
Beall,C.J., Mahajan,S., Kuhn,D.E., &Kolattukudy,P.E. Sitedirected mutagenesis of monocyte chemoattractant protein-1 identifies two regions of the polypeptide essential for biological activity. Biochem. J.313 ( Pt 2), 633-640 (1996).
Chakravarty,L., Rogers,L., Quach,T., Breckenridge,S., &Kolattukudy,P.E. Lysine 58 and histidine 66 at the C-terminal alpha-helix of monocyte chemoattractant protein-1 are essential for glycosaminoglycan binding. J. Biol. Chem.273, 29641-29647 (1998).
Semple,B.D., Frugier,T., &Morganti-Kossmann,M.C. CCL2 modulates cytokine production in cultured mouse astrocytes. J. Neuroinflammation.7, 67 (2010).
Semple,B.D., Bye,N., Rancan,M., Ziebell,J.M., &Morganti-Kossmann,M.C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J. Cereb. Blood Flow Metab30, 769-782 (2010).
Thompson,W.L., Karpus,W.J., & Van Eldik,L.J. MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J. Neuroinflammation.5, 35 (2008).
Chen,D. et al. Differential chemokine and chemokine receptor gene induction by ischemia, alloantigen, and gene transfer in cardiac grafts. Am. J. Transplant.3, 1216-1229 (2003).
Hughes,P.M. et al. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J. Cereb. Blood Flow Metab22, 308-317 (2002).
Dawson, J., Miltz,W., Mir,A.K., &Wiessner,C. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert. Opin. Ther. Targets.7, 35-48 (2003).
Mahad,D.J. &Ransohoff,R.M. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE).Semin. Immunol.15, 23-32 (2003).
Barna, B.P. et al. Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J. Neuroimmunol.50, 101-107 (1994).
Dimitrijevic, O.B., Stamatovic, S.M., Keep,R.F., & Andjelkovic, A.V. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke38, 1345-1353 (2007).
Tang,G., Charo,D.N., Wang,R., Charo,I.F., &Messina,L. CCR2-/- knockout mice revascularize normally in response to severe hindlimb ischemia. J. Vasc. Surg.40, 786-795 (2004).
Andres R.H. et al. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke42, 2923-2931 (2011).
Kalehua AN, et al. Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp. Cell Res.297, 197-211 (2004).
Bertini R. et al.Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br. J. Pharmacol. 165, 436-454 (2012).
Cavalieri B et al. Neutrophil recruitment in the reperfusedinjured rat liver was effectively attenuated by repertaxin, a novel allosteric noncompetitive inhibitor of CXCL8 receptors: a therapeutic approach for the treatment of post-ischemic hepatic syndromes. Int. J. Immunopathol. Pharmacol.18, 475-486 (2005).
Hirose M, Götz J, Recke A, Zillikens D, Ludwig RJ. The Allosteric CXCR1/2 Inhibitor DF2156A Improves Experimental Epidermolysis Bullosa Acquisita. J Genet Syndr Gene Ther 2013 S3:005.