2014, Número 2
<< Anterior Siguiente >>
Rev Med MD 2014; 5.6 (2)
TGF-β y otras moléculas profibróticas en enfermedad renal crónica
Topete-Reyes JF
Idioma: Español
Referencias bibliográficas: 43
Paginas: 105-110
Archivo PDF: 177.20 Kb.
RESUMEN
La fibrosis renal se caracteriza por la sustitución del tejido intersticial por colágeno, que se produce a
partir de diferentes células, principalmente miofibroblastos cuyo origen no se ha logrado determinar
con absoluta certeza, pero los candidatos mas probables son pericitos y fibroblastos, que cambian su
fentotipo por la participación de moléculas como factor de crecimiento transformante β, factor de
crecimiento de tejido conectivo, factor de crecimiento derivado de plaquetas, factor de crecimiento
epidérmico y angiotensina II. Estas moléculas comparten vías de señalización intracelular y pueden
amplificar mutuamente sus efectos. Se ha mostrado su participación en entidades como nefropatía
diabética, glomeruloesclerosis focal y segmentaria, nefropatía membranosa, nefropatía por IgA,
enfermedades glomerulares con formación de medias lunas, glomerulonefritis membranoproliferativa
e incluso en la nefroangioesclerosis hipertensiva. Se pretende el diseño de nuevos
fármacos capaces de bloquearlas y retardar así la progresión del daño renal.
REFERENCIAS (EN ESTE ARTÍCULO)
1.Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult U.S. population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41:1-12.
2.Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol. 2014 Apr;10(4):226-37
3.Loeffler I, Wolf G. Transforming growth factor-beta and the progression of renal disease. Nephrol Dial Transplant, 2014. 29 Suppl 1:i37-i45.
4.Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol. 2014 Dec;10(12):700-11. 5.Travis, MA. and Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol, 2014. 32:51-82.
6.Schiffer M, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest, 2001. 108(6):807- 16.
7.Ki t amura M. and S to T S . TGF - betaand glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol Dial Transplant, 1997. 12(4):669-79.
8.Lee, HS. Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease. Cell Tissue Res, 2012. 347(1):129-40.
9.Yamamoto T, et al., Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A, 1993. 90(5):1814-8.
10.Pohlers D, et al. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta, 2009. 1792(8):746-56.
11.Schiffer M, Mundel P, Shaw AS, Böttinger EP. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem. 2004 Aug 27;279(35):37004- 12.
12.Diamond-Stanic MK, You YH, Sharma K. Sugar, sex, and TGF-beta in diabetic nephropathy. Semin Nephrol. 2012 May;32(3):261-8.
13.Townsend RR, Weir MR. Angiotensin II blockade after kidney transplantation. J Am Soc Nephrol. 2013 Feb;24(2):167-8.
14.Wang S, et al. Cell-cycle mechanisms involved in podocyte proliferation in cellular lesion of focal segmental glomerulosclerosis. Am J Kidney Dis, 2004. 43(1): p. 19-27.
15.Kriz W, and LeHir M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int, 2005. 67(2):404-19.
16.Kang YS, Li Y, Dai C, Kiss LP, Wu C, Liu Y. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int. 2010 Aug;78(4):363-73.
17.Kambham N. Crescentic Glomerulonephritis: an update on Pauci-immune and Anti-GBM diseases. Adv Anat Pathol. 2012 Mar;19(2):111-24.
18.Lai, K.N., Pathogenesis of IgA nephropathy. Nat Rev Nephrol, 2012. 8(5):275-83.
19.Eddy AA, Neilson EG. Chronic kidney disease progression. J Am Soc Nephrol. 2006,17:2964 –66.
20.Wang, Y. and D.C. Harris, Macrophages in renal disease. J Am Soc Nephrol, 2011. 22(1):21-7.
21.Eddy AA. The origin of scar-forming kidney myofibroblasts. Nat Med, 2013. 19(8): p. 964-6.
22.Yang L, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med, 2010. 16(5):535-43, 1p following 143.
23.Mackensen-Haen S, et al. The consequences for renal function of widening of the interstitium and changes in the tubular epithelium of the renal cortex and outer medulla in various renal diseases. Clin Nephrol, 1992. 37(2):70-7.
24.Yamaguchi I, et al. Vascular endothelial cadherin modulates renal interstitial fibrosis. Nephron Exp Nephrol, 2012. 120(1):e20-31.
25.Long DA, Norman JT, Fine LG. Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol, 2012. 8(4):244-50.
26.Hanna C, et al. Hypoxia-inducible factor-2alpha and TGF-beta signaling interact to promote normoxic glomerular fibrogenesis. Am J Physiol Renal Physiol, 2013. 305(9):F1323-31.
27.Kok HM, et al. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol, 2014. 10(12): 700-711.
28.Ruster C. and Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol, 2011. 22(7): 1189-99.
29.Gerritsen KG, et al. Renal proximal tubular dysfunction is a major determinant of urinary connective tissue growth factor excretion. Am J Physiol Renal Physiol, 2010. 298(6):F1457-64.
30.Lautrette A, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med, 2005. 11(8):867-74.
31.Tsau Y. and Chen C. Urinary epidermal growth factor excretion in children with chronic renal failure. Am J Nephrol, 1999. 19(3):400-4.
32.Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev, 2004. 15(4):197-204.
33.Chen YT, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int, 2011. 80(11):1170-81.
34.Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrol Dial Transplant, 2014. 29 Suppl 1:i45-i54.
35.Ostendorf T, et al. A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediatorofmesangio proliferative glomer ulonephritis. J Am Soc Nephrol, 2003. 14(9):2237-47.
36.Daniela M, Iuseppe R, Ariela B. Key fibrogenic mediators: old players. Renin–angiotensin system, Kidney International Supplements (2014) 4:58–64.
37.Samarakoon R, Overstreet JM, Higgins PJ. TGFbeta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal, 2013. 25(1):264-8.
38.Macconi D, et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol, 2012. 23(9): p. 1496-505.
39.Zhong X, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol, 2011. 22(9):1668-81.
40.Glowacki F, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One, 2013. 8(2):e58014.
41.Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, Koh P, Thomas M, Jandeleit- Dahm K, Gregorevic P, Cooper ME, Kantharidis P: Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012 Feb;23(2):252-65.
42.Wang Z, et al. Hypoxia-inducible factor-1alpha contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int, 2011. 79(3):300-10.
43.Reich B, et al. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int, 2013. 84(1):78-89.
44.Abbate M, et al. Proximal tubular cells promote fibrogenesis by TGF-beta1-mediated induction of peritubular myofibroblasts. Kidney Int, 2002. 61(6):2066-77.